ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprm GIF version

Theorem nqprm 7572
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7577. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprm (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7442 . . 3 (𝐴Q → ∃𝑞Q 𝑞 <Q 𝐴)
2 vex 2755 . . . . 5 𝑞 ∈ V
3 breq1 4021 . . . . 5 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
42, 3elab 2896 . . . 4 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
54rexbii 2497 . . 3 (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑞Q 𝑞 <Q 𝐴)
61, 5sylibr 134 . 2 (𝐴Q → ∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴})
7 archnqq 7447 . . . . 5 (𝐴Q → ∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q )
8 df-rex 2474 . . . . 5 (∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q ↔ ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
97, 8sylib 122 . . . 4 (𝐴Q → ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
10 1pi 7345 . . . . . . . 8 1oN
11 opelxpi 4676 . . . . . . . . 9 ((𝑛N ∧ 1oN) → ⟨𝑛, 1o⟩ ∈ (N × N))
12 enqex 7390 . . . . . . . . . 10 ~Q ∈ V
1312ecelqsi 6616 . . . . . . . . 9 (⟨𝑛, 1o⟩ ∈ (N × N) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1411, 13syl 14 . . . . . . . 8 ((𝑛N ∧ 1oN) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1510, 14mpan2 425 . . . . . . 7 (𝑛N → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
16 df-nqqs 7378 . . . . . . 7 Q = ((N × N) / ~Q )
1715, 16eleqtrrdi 2283 . . . . . 6 (𝑛N → [⟨𝑛, 1o⟩] ~QQ)
18 breq2 4022 . . . . . . 7 (𝑟 = [⟨𝑛, 1o⟩] ~Q → (𝐴 <Q 𝑟𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
1918rspcev 2856 . . . . . 6 (([⟨𝑛, 1o⟩] ~QQ𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2017, 19sylan 283 . . . . 5 ((𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2120exlimiv 1609 . . . 4 (∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
229, 21syl 14 . . 3 (𝐴Q → ∃𝑟Q 𝐴 <Q 𝑟)
23 vex 2755 . . . . 5 𝑟 ∈ V
24 breq2 4022 . . . . 5 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
2523, 24elab 2896 . . . 4 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
2625rexbii 2497 . . 3 (∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑟Q 𝐴 <Q 𝑟)
2722, 26sylibr 134 . 2 (𝐴Q → ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})
286, 27jca 306 1 (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1503  wcel 2160  {cab 2175  wrex 2469  cop 3610   class class class wbr 4018   × cxp 4642  1oc1o 6435  [cec 6558   / cqs 6559  Ncnpi 7302   ~Q ceq 7309  Qcnq 7310   <Q cltq 7315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383
This theorem is referenced by:  nqprxx  7576
  Copyright terms: Public domain W3C validator