Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqprm | GIF version |
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7509. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprm | ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 7374 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q 𝐴) | |
2 | vex 2733 | . . . . 5 ⊢ 𝑞 ∈ V | |
3 | breq1 3992 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
4 | 2, 3 | elab 2874 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
5 | 4 | rexbii 2477 | . . 3 ⊢ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑞 ∈ Q 𝑞 <Q 𝐴) |
6 | 1, 5 | sylibr 133 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) |
7 | archnqq 7379 | . . . . 5 ⊢ (𝐴 ∈ Q → ∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1o〉] ~Q ) | |
8 | df-rex 2454 | . . . . 5 ⊢ (∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1o〉] ~Q ↔ ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) | |
9 | 7, 8 | sylib 121 | . . . 4 ⊢ (𝐴 ∈ Q → ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) |
10 | 1pi 7277 | . . . . . . . 8 ⊢ 1o ∈ N | |
11 | opelxpi 4643 | . . . . . . . . 9 ⊢ ((𝑛 ∈ N ∧ 1o ∈ N) → 〈𝑛, 1o〉 ∈ (N × N)) | |
12 | enqex 7322 | . . . . . . . . . 10 ⊢ ~Q ∈ V | |
13 | 12 | ecelqsi 6567 | . . . . . . . . 9 ⊢ (〈𝑛, 1o〉 ∈ (N × N) → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
14 | 11, 13 | syl 14 | . . . . . . . 8 ⊢ ((𝑛 ∈ N ∧ 1o ∈ N) → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
15 | 10, 14 | mpan2 423 | . . . . . . 7 ⊢ (𝑛 ∈ N → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
16 | df-nqqs 7310 | . . . . . . 7 ⊢ Q = ((N × N) / ~Q ) | |
17 | 15, 16 | eleqtrrdi 2264 | . . . . . 6 ⊢ (𝑛 ∈ N → [〈𝑛, 1o〉] ~Q ∈ Q) |
18 | breq2 3993 | . . . . . . 7 ⊢ (𝑟 = [〈𝑛, 1o〉] ~Q → (𝐴 <Q 𝑟 ↔ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) | |
19 | 18 | rspcev 2834 | . . . . . 6 ⊢ (([〈𝑛, 1o〉] ~Q ∈ Q ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
20 | 17, 19 | sylan 281 | . . . . 5 ⊢ ((𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
21 | 20 | exlimiv 1591 | . . . 4 ⊢ (∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
22 | 9, 21 | syl 14 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
23 | vex 2733 | . . . . 5 ⊢ 𝑟 ∈ V | |
24 | breq2 3993 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
25 | 23, 24 | elab 2874 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
26 | 25 | rexbii 2477 | . . 3 ⊢ (∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
27 | 22, 26 | sylibr 133 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
28 | 6, 27 | jca 304 | 1 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∃wrex 2449 〈cop 3586 class class class wbr 3989 × cxp 4609 1oc1o 6388 [cec 6511 / cqs 6512 Ncnpi 7234 ~Q ceq 7241 Qcnq 7242 <Q cltq 7247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 |
This theorem is referenced by: nqprxx 7508 |
Copyright terms: Public domain | W3C validator |