ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprm GIF version

Theorem nqprm 7626
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7631. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprm (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7496 . . 3 (𝐴Q → ∃𝑞Q 𝑞 <Q 𝐴)
2 vex 2766 . . . . 5 𝑞 ∈ V
3 breq1 4037 . . . . 5 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
42, 3elab 2908 . . . 4 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
54rexbii 2504 . . 3 (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑞Q 𝑞 <Q 𝐴)
61, 5sylibr 134 . 2 (𝐴Q → ∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴})
7 archnqq 7501 . . . . 5 (𝐴Q → ∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q )
8 df-rex 2481 . . . . 5 (∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q ↔ ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
97, 8sylib 122 . . . 4 (𝐴Q → ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
10 1pi 7399 . . . . . . . 8 1oN
11 opelxpi 4696 . . . . . . . . 9 ((𝑛N ∧ 1oN) → ⟨𝑛, 1o⟩ ∈ (N × N))
12 enqex 7444 . . . . . . . . . 10 ~Q ∈ V
1312ecelqsi 6657 . . . . . . . . 9 (⟨𝑛, 1o⟩ ∈ (N × N) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1411, 13syl 14 . . . . . . . 8 ((𝑛N ∧ 1oN) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1510, 14mpan2 425 . . . . . . 7 (𝑛N → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
16 df-nqqs 7432 . . . . . . 7 Q = ((N × N) / ~Q )
1715, 16eleqtrrdi 2290 . . . . . 6 (𝑛N → [⟨𝑛, 1o⟩] ~QQ)
18 breq2 4038 . . . . . . 7 (𝑟 = [⟨𝑛, 1o⟩] ~Q → (𝐴 <Q 𝑟𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
1918rspcev 2868 . . . . . 6 (([⟨𝑛, 1o⟩] ~QQ𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2017, 19sylan 283 . . . . 5 ((𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2120exlimiv 1612 . . . 4 (∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
229, 21syl 14 . . 3 (𝐴Q → ∃𝑟Q 𝐴 <Q 𝑟)
23 vex 2766 . . . . 5 𝑟 ∈ V
24 breq2 4038 . . . . 5 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
2523, 24elab 2908 . . . 4 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
2625rexbii 2504 . . 3 (∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑟Q 𝐴 <Q 𝑟)
2722, 26sylibr 134 . 2 (𝐴Q → ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})
286, 27jca 306 1 (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1506  wcel 2167  {cab 2182  wrex 2476  cop 3626   class class class wbr 4034   × cxp 4662  1oc1o 6476  [cec 6599   / cqs 6600  Ncnpi 7356   ~Q ceq 7363  Qcnq 7364   <Q cltq 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437
This theorem is referenced by:  nqprxx  7630
  Copyright terms: Public domain W3C validator