![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nqprm | GIF version |
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7607. (Contributed by Jim Kingdon, 8-Dec-2019.) |
Ref | Expression |
---|---|
nqprm | ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsmallnqq 7472 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 <Q 𝐴) | |
2 | vex 2763 | . . . . 5 ⊢ 𝑞 ∈ V | |
3 | breq1 4032 | . . . . 5 ⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝐴 ↔ 𝑞 <Q 𝐴)) | |
4 | 2, 3 | elab 2904 | . . . 4 ⊢ (𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴) |
5 | 4 | rexbii 2501 | . . 3 ⊢ (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ↔ ∃𝑞 ∈ Q 𝑞 <Q 𝐴) |
6 | 1, 5 | sylibr 134 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴}) |
7 | archnqq 7477 | . . . . 5 ⊢ (𝐴 ∈ Q → ∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1o〉] ~Q ) | |
8 | df-rex 2478 | . . . . 5 ⊢ (∃𝑛 ∈ N 𝐴 <Q [〈𝑛, 1o〉] ~Q ↔ ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) | |
9 | 7, 8 | sylib 122 | . . . 4 ⊢ (𝐴 ∈ Q → ∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) |
10 | 1pi 7375 | . . . . . . . 8 ⊢ 1o ∈ N | |
11 | opelxpi 4691 | . . . . . . . . 9 ⊢ ((𝑛 ∈ N ∧ 1o ∈ N) → 〈𝑛, 1o〉 ∈ (N × N)) | |
12 | enqex 7420 | . . . . . . . . . 10 ⊢ ~Q ∈ V | |
13 | 12 | ecelqsi 6643 | . . . . . . . . 9 ⊢ (〈𝑛, 1o〉 ∈ (N × N) → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
14 | 11, 13 | syl 14 | . . . . . . . 8 ⊢ ((𝑛 ∈ N ∧ 1o ∈ N) → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
15 | 10, 14 | mpan2 425 | . . . . . . 7 ⊢ (𝑛 ∈ N → [〈𝑛, 1o〉] ~Q ∈ ((N × N) / ~Q )) |
16 | df-nqqs 7408 | . . . . . . 7 ⊢ Q = ((N × N) / ~Q ) | |
17 | 15, 16 | eleqtrrdi 2287 | . . . . . 6 ⊢ (𝑛 ∈ N → [〈𝑛, 1o〉] ~Q ∈ Q) |
18 | breq2 4033 | . . . . . . 7 ⊢ (𝑟 = [〈𝑛, 1o〉] ~Q → (𝐴 <Q 𝑟 ↔ 𝐴 <Q [〈𝑛, 1o〉] ~Q )) | |
19 | 18 | rspcev 2864 | . . . . . 6 ⊢ (([〈𝑛, 1o〉] ~Q ∈ Q ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
20 | 17, 19 | sylan 283 | . . . . 5 ⊢ ((𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
21 | 20 | exlimiv 1609 | . . . 4 ⊢ (∃𝑛(𝑛 ∈ N ∧ 𝐴 <Q [〈𝑛, 1o〉] ~Q ) → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
22 | 9, 21 | syl 14 | . . 3 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
23 | vex 2763 | . . . . 5 ⊢ 𝑟 ∈ V | |
24 | breq2 4033 | . . . . 5 ⊢ (𝑥 = 𝑟 → (𝐴 <Q 𝑥 ↔ 𝐴 <Q 𝑟)) | |
25 | 23, 24 | elab 2904 | . . . 4 ⊢ (𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟) |
26 | 25 | rexbii 2501 | . . 3 ⊢ (∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥} ↔ ∃𝑟 ∈ Q 𝐴 <Q 𝑟) |
27 | 22, 26 | sylibr 134 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥}) |
28 | 6, 27 | jca 306 | 1 ⊢ (𝐴 ∈ Q → (∃𝑞 ∈ Q 𝑞 ∈ {𝑥 ∣ 𝑥 <Q 𝐴} ∧ ∃𝑟 ∈ Q 𝑟 ∈ {𝑥 ∣ 𝐴 <Q 𝑥})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∃wex 1503 ∈ wcel 2164 {cab 2179 ∃wrex 2473 〈cop 3621 class class class wbr 4029 × cxp 4657 1oc1o 6462 [cec 6585 / cqs 6586 Ncnpi 7332 ~Q ceq 7339 Qcnq 7340 <Q cltq 7345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 |
This theorem is referenced by: nqprxx 7606 |
Copyright terms: Public domain | W3C validator |