ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqprm GIF version

Theorem nqprm 7662
Description: A cut produced from a rational is inhabited. Lemma for nqprlu 7667. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
nqprm (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Distinct variable group:   𝑥,𝐴,𝑟,𝑞

Proof of Theorem nqprm
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nsmallnqq 7532 . . 3 (𝐴Q → ∃𝑞Q 𝑞 <Q 𝐴)
2 vex 2776 . . . . 5 𝑞 ∈ V
3 breq1 4050 . . . . 5 (𝑥 = 𝑞 → (𝑥 <Q 𝐴𝑞 <Q 𝐴))
42, 3elab 2918 . . . 4 (𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑞 <Q 𝐴)
54rexbii 2514 . . 3 (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ↔ ∃𝑞Q 𝑞 <Q 𝐴)
61, 5sylibr 134 . 2 (𝐴Q → ∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴})
7 archnqq 7537 . . . . 5 (𝐴Q → ∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q )
8 df-rex 2491 . . . . 5 (∃𝑛N 𝐴 <Q [⟨𝑛, 1o⟩] ~Q ↔ ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
97, 8sylib 122 . . . 4 (𝐴Q → ∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
10 1pi 7435 . . . . . . . 8 1oN
11 opelxpi 4711 . . . . . . . . 9 ((𝑛N ∧ 1oN) → ⟨𝑛, 1o⟩ ∈ (N × N))
12 enqex 7480 . . . . . . . . . 10 ~Q ∈ V
1312ecelqsi 6683 . . . . . . . . 9 (⟨𝑛, 1o⟩ ∈ (N × N) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1411, 13syl 14 . . . . . . . 8 ((𝑛N ∧ 1oN) → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
1510, 14mpan2 425 . . . . . . 7 (𝑛N → [⟨𝑛, 1o⟩] ~Q ∈ ((N × N) / ~Q ))
16 df-nqqs 7468 . . . . . . 7 Q = ((N × N) / ~Q )
1715, 16eleqtrrdi 2300 . . . . . 6 (𝑛N → [⟨𝑛, 1o⟩] ~QQ)
18 breq2 4051 . . . . . . 7 (𝑟 = [⟨𝑛, 1o⟩] ~Q → (𝐴 <Q 𝑟𝐴 <Q [⟨𝑛, 1o⟩] ~Q ))
1918rspcev 2878 . . . . . 6 (([⟨𝑛, 1o⟩] ~QQ𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2017, 19sylan 283 . . . . 5 ((𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
2120exlimiv 1622 . . . 4 (∃𝑛(𝑛N𝐴 <Q [⟨𝑛, 1o⟩] ~Q ) → ∃𝑟Q 𝐴 <Q 𝑟)
229, 21syl 14 . . 3 (𝐴Q → ∃𝑟Q 𝐴 <Q 𝑟)
23 vex 2776 . . . . 5 𝑟 ∈ V
24 breq2 4051 . . . . 5 (𝑥 = 𝑟 → (𝐴 <Q 𝑥𝐴 <Q 𝑟))
2523, 24elab 2918 . . . 4 (𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ 𝐴 <Q 𝑟)
2625rexbii 2514 . . 3 (∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥} ↔ ∃𝑟Q 𝐴 <Q 𝑟)
2722, 26sylibr 134 . 2 (𝐴Q → ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥})
286, 27jca 306 1 (𝐴Q → (∃𝑞Q 𝑞 ∈ {𝑥𝑥 <Q 𝐴} ∧ ∃𝑟Q 𝑟 ∈ {𝑥𝐴 <Q 𝑥}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wcel 2177  {cab 2192  wrex 2486  cop 3637   class class class wbr 4047   × cxp 4677  1oc1o 6502  [cec 6625   / cqs 6626  Ncnpi 7392   ~Q ceq 7399  Qcnq 7400   <Q cltq 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-eprel 4340  df-id 4344  df-iord 4417  df-on 4419  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-1o 6509  df-oadd 6513  df-omul 6514  df-er 6627  df-ec 6629  df-qs 6633  df-ni 7424  df-pli 7425  df-mi 7426  df-lti 7427  df-plpq 7464  df-mpq 7465  df-enq 7467  df-nqqs 7468  df-plqqs 7469  df-mqqs 7470  df-1nqqs 7471  df-rq 7472  df-ltnqqs 7473
This theorem is referenced by:  nqprxx  7666
  Copyright terms: Public domain W3C validator