![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elnnne0 | GIF version |
Description: The positive integer property expressed in terms of difference from zero. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
elnnne0 | ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfn2 9207 | . . 3 ⊢ ℕ = (ℕ0 ∖ {0}) | |
2 | 1 | eleq2i 2256 | . 2 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℕ0 ∖ {0})) |
3 | eldifsn 3734 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
4 | 2, 3 | bitri 184 | 1 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2160 ≠ wne 2360 ∖ cdif 3141 {csn 3607 0cc0 7829 ℕcn 8937 ℕ0cn0 9194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1re 7923 ax-addrcl 7926 ax-0lt1 7935 ax-0id 7937 ax-rnegex 7938 ax-pre-ltirr 7941 ax-pre-lttrn 7943 ax-pre-ltadd 7945 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-xp 4647 df-cnv 4649 df-iota 5193 df-fv 5239 df-ov 5894 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-inn 8938 df-n0 9195 |
This theorem is referenced by: nn0n0n1ge2 9341 fzo1fzo0n0 10201 bezoutlemle 12027 eucalgval2 12071 eucalglt 12075 hashfinmndnn 12859 |
Copyright terms: Public domain | W3C validator |