![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdslcm | GIF version |
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
Ref | Expression |
---|---|
dvdslcm | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds0 11303 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∥ 0) | |
2 | 1 | ad2antrr 475 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ 0) |
3 | oveq1 5713 | . . . . . . 7 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑁) = (0 lcm 𝑁)) | |
4 | 0z 8917 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
5 | lcmcom 11538 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 lcm 0) = (0 lcm 𝑁)) | |
6 | 4, 5 | mpan2 419 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = (0 lcm 𝑁)) |
7 | lcm0val 11539 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (𝑁 lcm 0) = 0) | |
8 | 6, 7 | eqtr3d 2134 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (0 lcm 𝑁) = 0) |
9 | 3, 8 | sylan9eqr 2154 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
10 | 9 | adantll 463 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀 lcm 𝑁) = 0) |
11 | oveq2 5714 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑀 lcm 𝑁) = (𝑀 lcm 0)) | |
12 | lcm0val 11539 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
13 | 11, 12 | sylan9eqr 2154 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
14 | 13 | adantlr 464 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 = 0) → (𝑀 lcm 𝑁) = 0) |
15 | 10, 14 | jaodan 752 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) = 0) |
16 | 2, 15 | breqtrrd 3901 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑀 ∥ (𝑀 lcm 𝑁)) |
17 | dvds0 11303 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∥ 0) | |
18 | 17 | ad2antlr 476 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ 0) |
19 | 18, 15 | breqtrrd 3901 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → 𝑁 ∥ (𝑀 lcm 𝑁)) |
20 | 16, 19 | jca 302 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
21 | lcmcllem 11541 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)}) | |
22 | lcmn0cl 11542 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 lcm 𝑁) ∈ ℕ) | |
23 | breq2 3879 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑀 ∥ 𝑛 ↔ 𝑀 ∥ (𝑀 lcm 𝑁))) | |
24 | breq2 3879 | . . . . . 6 ⊢ (𝑛 = (𝑀 lcm 𝑁) → (𝑁 ∥ 𝑛 ↔ 𝑁 ∥ (𝑀 lcm 𝑁))) | |
25 | 23, 24 | anbi12d 460 | . . . . 5 ⊢ (𝑛 = (𝑀 lcm 𝑁) → ((𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛) ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
26 | 25 | elrab3 2794 | . . . 4 ⊢ ((𝑀 lcm 𝑁) ∈ ℕ → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
27 | 22, 26 | syl 14 | . . 3 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → ((𝑀 lcm 𝑁) ∈ {𝑛 ∈ ℕ ∣ (𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛)} ↔ (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))) |
28 | 21, 27 | mpbid 146 | . 2 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∨ 𝑁 = 0)) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
29 | lcmmndc 11536 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∨ 𝑁 = 0)) | |
30 | exmiddc 788 | . . 3 ⊢ (DECID (𝑀 = 0 ∨ 𝑁 = 0) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) | |
31 | 29, 30 | syl 14 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 = 0 ∨ 𝑁 = 0) ∨ ¬ (𝑀 = 0 ∨ 𝑁 = 0))) |
32 | 20, 28, 31 | mpjaodan 753 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 670 DECID wdc 786 = wceq 1299 ∈ wcel 1448 {crab 2379 class class class wbr 3875 (class class class)co 5706 0cc0 7500 ℕcn 8578 ℤcz 8906 ∥ cdvds 11288 lcm clcm 11534 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 ax-arch 7614 ax-caucvg 7615 |
This theorem depends on definitions: df-bi 116 df-dc 787 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-if 3422 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-po 4156 df-iso 4157 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-isom 5068 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-recs 6132 df-frec 6218 df-sup 6786 df-inf 6787 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-2 8637 df-3 8638 df-4 8639 df-n0 8830 df-z 8907 df-uz 9177 df-q 9262 df-rp 9292 df-fz 9632 df-fzo 9761 df-fl 9884 df-mod 9937 df-seqfrec 10060 df-exp 10134 df-cj 10455 df-re 10456 df-im 10457 df-rsqrt 10610 df-abs 10611 df-dvds 11289 df-lcm 11535 |
This theorem is referenced by: gcddvdslcm 11547 lcmneg 11548 lcmgcdeq 11557 lcmdvdsb 11558 |
Copyright terms: Public domain | W3C validator |