ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 GIF version

Theorem cauappcvgprlem1 7743
Description: Lemma for cauappcvgpr 7746. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlem.q (𝜑𝑄Q)
cauappcvgprlem.r (𝜑𝑅Q)
Assertion
Ref Expression
cauappcvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑝,𝑞,𝑙,𝑢   𝑄,𝑝,𝑞,𝑙,𝑢   𝑅,𝑝,𝑞,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlem1
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5 (𝜑𝑅Q)
2 halfnqq 7494 . . . . 5 (𝑅Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑅)
31, 2syl 14 . . . 4 (𝜑 → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑅)
4 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑥Q)
5 cauappcvgpr.app . . . . . . . . . . 11 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
65adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
7 cauappcvgprlem.q . . . . . . . . . . . 12 (𝜑𝑄Q)
87adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑄Q)
9 fveq2 5561 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → (𝐹𝑝) = (𝐹𝑄))
10 oveq1 5932 . . . . . . . . . . . . . . 15 (𝑝 = 𝑄 → (𝑝 +Q 𝑞) = (𝑄 +Q 𝑞))
1110oveq2d 5941 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑞) +Q (𝑄 +Q 𝑞)))
129, 11breq12d 4047 . . . . . . . . . . . . 13 (𝑝 = 𝑄 → ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞))))
139, 10oveq12d 5943 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑄) +Q (𝑄 +Q 𝑞)))
1413breq2d 4046 . . . . . . . . . . . . 13 (𝑝 = 𝑄 → ((𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞))))
1512, 14anbi12d 473 . . . . . . . . . . . 12 (𝑝 = 𝑄 → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞)))))
16 fveq2 5561 . . . . . . . . . . . . . . 15 (𝑞 = 𝑥 → (𝐹𝑞) = (𝐹𝑥))
17 oveq2 5933 . . . . . . . . . . . . . . 15 (𝑞 = 𝑥 → (𝑄 +Q 𝑞) = (𝑄 +Q 𝑥))
1816, 17oveq12d 5943 . . . . . . . . . . . . . 14 (𝑞 = 𝑥 → ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
1918breq2d 4046 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → ((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ↔ (𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥))))
2017oveq2d 5941 . . . . . . . . . . . . . 14 (𝑞 = 𝑥 → ((𝐹𝑄) +Q (𝑄 +Q 𝑞)) = ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))
2116, 20breq12d 4047 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → ((𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞)) ↔ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥))))
2219, 21anbi12d 473 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞))) ↔ ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
2315, 22rspc2v 2881 . . . . . . . . . . 11 ((𝑄Q𝑥Q) → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
248, 4, 23syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
256, 24mpd 13 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥))))
2625simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
27 cauappcvgpr.f . . . . . . . . . . 11 (𝜑𝐹:QQ)
2827adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝐹:QQ)
2928, 4ffvelcdmd 5701 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑥) ∈ Q)
30 addassnqg 7466 . . . . . . . . 9 (((𝐹𝑥) ∈ Q𝑄Q𝑥Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
3129, 8, 4, 30syl3anc 1249 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
3226, 31breqtrrd 4062 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) <Q (((𝐹𝑥) +Q 𝑄) +Q 𝑥))
33 ltanqg 7484 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3433adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3527, 7ffvelcdmd 5701 . . . . . . . . 9 (𝜑 → (𝐹𝑄) ∈ Q)
3635adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) ∈ Q)
37 addclnq 7459 . . . . . . . . . 10 (((𝐹𝑥) ∈ Q𝑄Q) → ((𝐹𝑥) +Q 𝑄) ∈ Q)
3829, 8, 37syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑥) +Q 𝑄) ∈ Q)
39 addclnq 7459 . . . . . . . . 9 ((((𝐹𝑥) +Q 𝑄) ∈ Q𝑥Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ∈ Q)
4038, 4, 39syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ∈ Q)
41 addcomnqg 7465 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4241adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4334, 36, 40, 4, 42caovord2d 6097 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) <Q (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ↔ ((𝐹𝑄) +Q 𝑥) <Q ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥)))
4432, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) +Q 𝑥) <Q ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥))
45 addassnqg 7466 . . . . . . . 8 ((((𝐹𝑥) +Q 𝑄) ∈ Q𝑥Q𝑥Q) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)))
4638, 4, 4, 45syl3anc 1249 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)))
47 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝑥 +Q 𝑥) = 𝑅)
4847oveq2d 5941 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)) = (((𝐹𝑥) +Q 𝑄) +Q 𝑅))
491adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑅Q)
50 addassnqg 7466 . . . . . . . 8 (((𝐹𝑥) ∈ Q𝑄Q𝑅Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑅) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5129, 8, 49, 50syl3anc 1249 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑅) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5246, 48, 513eqtrd 2233 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5344, 52breqtrd 4060 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
54 oveq2 5933 . . . . . . 7 (𝑞 = 𝑥 → ((𝐹𝑄) +Q 𝑞) = ((𝐹𝑄) +Q 𝑥))
5516oveq1d 5940 . . . . . . 7 (𝑞 = 𝑥 → ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5654, 55breq12d 4047 . . . . . 6 (𝑞 = 𝑥 → (((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅))))
5756rspcev 2868 . . . . 5 ((𝑥Q ∧ ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅))) → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
584, 53, 57syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
593, 58rexlimddv 2619 . . 3 (𝜑 → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
60 cauappcvgpr.bnd . . . . . . . 8 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
61 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
62 addclnq 7459 . . . . . . . . 9 ((𝑄Q𝑅Q) → (𝑄 +Q 𝑅) ∈ Q)
637, 1, 62syl2anc 411 . . . . . . . 8 (𝜑 → (𝑄 +Q 𝑅) ∈ Q)
6427, 5, 60, 61, 63cauappcvgprlemladd 7742 . . . . . . 7 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
6564fveq2d 5565 . . . . . 6 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))
66 nqex 7447 . . . . . . . 8 Q ∈ V
6766rabex 4178 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ∈ V
6866rabex 4178 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢} ∈ V
6967, 68op1st 6213 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}
7065, 69eqtrdi 2245 . . . . 5 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))})
7170eleq2d 2266 . . . 4 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ (𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}))
72 oveq1 5932 . . . . . . . 8 (𝑙 = (𝐹𝑄) → (𝑙 +Q 𝑞) = ((𝐹𝑄) +Q 𝑞))
7372breq1d 4044 . . . . . . 7 (𝑙 = (𝐹𝑄) → ((𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7473rexbidv 2498 . . . . . 6 (𝑙 = (𝐹𝑄) → (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7574elrab3 2921 . . . . 5 ((𝐹𝑄) ∈ Q → ((𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7635, 75syl 14 . . . 4 (𝜑 → ((𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7771, 76bitrd 188 . . 3 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7859, 77mpbird 167 . 2 (𝜑 → (𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
7927, 5, 60, 61cauappcvgprlemcl 7737 . . . 4 (𝜑𝐿P)
80 nqprlu 7631 . . . . 5 ((𝑄 +Q 𝑅) ∈ Q → ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P)
8163, 80syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P)
82 addclpr 7621 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P)
8379, 81, 82syl2anc 411 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P)
84 nqprl 7635 . . 3 (((𝐹𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P) → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
8535, 83, 84syl2anc 411 . 2 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
8678, 85mpbid 147 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  {crab 2479  cop 3626   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  1st c1st 6205  Qcnq 7364   +Q cplq 7366   <Q cltq 7369  Pcnp 7375   +P cpp 7377  <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  cauappcvgprlemlim  7745
  Copyright terms: Public domain W3C validator