ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlem1 GIF version

Theorem cauappcvgprlem1 7657
Description: Lemma for cauappcvgpr 7660. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f (𝜑𝐹:QQ)
cauappcvgpr.app (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
cauappcvgpr.bnd (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
cauappcvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
cauappcvgprlem.q (𝜑𝑄Q)
cauappcvgprlem.r (𝜑𝑅Q)
Assertion
Ref Expression
cauappcvgprlem1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
Distinct variable groups:   𝐴,𝑝   𝐿,𝑝,𝑞   𝜑,𝑝,𝑞   𝐹,𝑝,𝑞,𝑙,𝑢   𝑄,𝑝,𝑞,𝑙,𝑢   𝑅,𝑝,𝑞,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐴(𝑢,𝑞,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem cauappcvgprlem1
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgprlem.r . . . . 5 (𝜑𝑅Q)
2 halfnqq 7408 . . . . 5 (𝑅Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑅)
31, 2syl 14 . . . 4 (𝜑 → ∃𝑥Q (𝑥 +Q 𝑥) = 𝑅)
4 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑥Q)
5 cauappcvgpr.app . . . . . . . . . . 11 (𝜑 → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
65adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))))
7 cauappcvgprlem.q . . . . . . . . . . . 12 (𝜑𝑄Q)
87adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑄Q)
9 fveq2 5515 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → (𝐹𝑝) = (𝐹𝑄))
10 oveq1 5881 . . . . . . . . . . . . . . 15 (𝑝 = 𝑄 → (𝑝 +Q 𝑞) = (𝑄 +Q 𝑞))
1110oveq2d 5890 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑞) +Q (𝑄 +Q 𝑞)))
129, 11breq12d 4016 . . . . . . . . . . . . 13 (𝑝 = 𝑄 → ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞))))
139, 10oveq12d 5892 . . . . . . . . . . . . . 14 (𝑝 = 𝑄 → ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) = ((𝐹𝑄) +Q (𝑄 +Q 𝑞)))
1413breq2d 4015 . . . . . . . . . . . . 13 (𝑝 = 𝑄 → ((𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞)) ↔ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞))))
1512, 14anbi12d 473 . . . . . . . . . . . 12 (𝑝 = 𝑄 → (((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) ↔ ((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞)))))
16 fveq2 5515 . . . . . . . . . . . . . . 15 (𝑞 = 𝑥 → (𝐹𝑞) = (𝐹𝑥))
17 oveq2 5882 . . . . . . . . . . . . . . 15 (𝑞 = 𝑥 → (𝑄 +Q 𝑞) = (𝑄 +Q 𝑥))
1816, 17oveq12d 5892 . . . . . . . . . . . . . 14 (𝑞 = 𝑥 → ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
1918breq2d 4015 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → ((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ↔ (𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥))))
2017oveq2d 5890 . . . . . . . . . . . . . 14 (𝑞 = 𝑥 → ((𝐹𝑄) +Q (𝑄 +Q 𝑞)) = ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))
2116, 20breq12d 4016 . . . . . . . . . . . . 13 (𝑞 = 𝑥 → ((𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞)) ↔ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥))))
2219, 21anbi12d 473 . . . . . . . . . . . 12 (𝑞 = 𝑥 → (((𝐹𝑄) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑞))) ↔ ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
2315, 22rspc2v 2854 . . . . . . . . . . 11 ((𝑄Q𝑥Q) → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
248, 4, 23syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (∀𝑝Q𝑞Q ((𝐹𝑝) <Q ((𝐹𝑞) +Q (𝑝 +Q 𝑞)) ∧ (𝐹𝑞) <Q ((𝐹𝑝) +Q (𝑝 +Q 𝑞))) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥)))))
256, 24mpd 13 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)) ∧ (𝐹𝑥) <Q ((𝐹𝑄) +Q (𝑄 +Q 𝑥))))
2625simpld 112 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
27 cauappcvgpr.f . . . . . . . . . . 11 (𝜑𝐹:QQ)
2827adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝐹:QQ)
2928, 4ffvelcdmd 5652 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑥) ∈ Q)
30 addassnqg 7380 . . . . . . . . 9 (((𝐹𝑥) ∈ Q𝑄Q𝑥Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
3129, 8, 4, 30syl3anc 1238 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑥)))
3226, 31breqtrrd 4031 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) <Q (((𝐹𝑥) +Q 𝑄) +Q 𝑥))
33 ltanqg 7398 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3433adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
3527, 7ffvelcdmd 5652 . . . . . . . . 9 (𝜑 → (𝐹𝑄) ∈ Q)
3635adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝐹𝑄) ∈ Q)
37 addclnq 7373 . . . . . . . . . 10 (((𝐹𝑥) ∈ Q𝑄Q) → ((𝐹𝑥) +Q 𝑄) ∈ Q)
3829, 8, 37syl2anc 411 . . . . . . . . 9 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑥) +Q 𝑄) ∈ Q)
39 addclnq 7373 . . . . . . . . 9 ((((𝐹𝑥) +Q 𝑄) ∈ Q𝑥Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ∈ Q)
4038, 4, 39syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ∈ Q)
41 addcomnqg 7379 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4241adantl 277 . . . . . . . 8 (((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4334, 36, 40, 4, 42caovord2d 6043 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) <Q (((𝐹𝑥) +Q 𝑄) +Q 𝑥) ↔ ((𝐹𝑄) +Q 𝑥) <Q ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥)))
4432, 43mpbid 147 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) +Q 𝑥) <Q ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥))
45 addassnqg 7380 . . . . . . . 8 ((((𝐹𝑥) +Q 𝑄) ∈ Q𝑥Q𝑥Q) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)))
4638, 4, 4, 45syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)))
47 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (𝑥 +Q 𝑥) = 𝑅)
4847oveq2d 5890 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q (𝑥 +Q 𝑥)) = (((𝐹𝑥) +Q 𝑄) +Q 𝑅))
491adantr 276 . . . . . . . 8 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → 𝑅Q)
50 addassnqg 7380 . . . . . . . 8 (((𝐹𝑥) ∈ Q𝑄Q𝑅Q) → (((𝐹𝑥) +Q 𝑄) +Q 𝑅) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5129, 8, 49, 50syl3anc 1238 . . . . . . 7 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → (((𝐹𝑥) +Q 𝑄) +Q 𝑅) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5246, 48, 513eqtrd 2214 . . . . . 6 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((((𝐹𝑥) +Q 𝑄) +Q 𝑥) +Q 𝑥) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5344, 52breqtrd 4029 . . . . 5 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
54 oveq2 5882 . . . . . . 7 (𝑞 = 𝑥 → ((𝐹𝑄) +Q 𝑞) = ((𝐹𝑄) +Q 𝑥))
5516oveq1d 5889 . . . . . . 7 (𝑞 = 𝑥 → ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) = ((𝐹𝑥) +Q (𝑄 +Q 𝑅)))
5654, 55breq12d 4016 . . . . . 6 (𝑞 = 𝑥 → (((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅))))
5756rspcev 2841 . . . . 5 ((𝑥Q ∧ ((𝐹𝑄) +Q 𝑥) <Q ((𝐹𝑥) +Q (𝑄 +Q 𝑅))) → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
584, 53, 57syl2anc 411 . . . 4 ((𝜑 ∧ (𝑥Q ∧ (𝑥 +Q 𝑥) = 𝑅)) → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
593, 58rexlimddv 2599 . . 3 (𝜑 → ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)))
60 cauappcvgpr.bnd . . . . . . . 8 (𝜑 → ∀𝑝Q 𝐴 <Q (𝐹𝑝))
61 cauappcvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q (𝐹𝑞)}, {𝑢Q ∣ ∃𝑞Q ((𝐹𝑞) +Q 𝑞) <Q 𝑢}⟩
62 addclnq 7373 . . . . . . . . 9 ((𝑄Q𝑅Q) → (𝑄 +Q 𝑅) ∈ Q)
637, 1, 62syl2anc 411 . . . . . . . 8 (𝜑 → (𝑄 +Q 𝑅) ∈ Q)
6427, 5, 60, 61, 63cauappcvgprlemladd 7656 . . . . . . 7 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) = ⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩)
6564fveq2d 5519 . . . . . 6 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) = (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩))
66 nqex 7361 . . . . . . . 8 Q ∈ V
6766rabex 4147 . . . . . . 7 {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ∈ V
6866rabex 4147 . . . . . . 7 {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢} ∈ V
6967, 68op1st 6146 . . . . . 6 (1st ‘⟨{𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}, {𝑢Q ∣ ∃𝑞Q (((𝐹𝑞) +Q 𝑞) +Q (𝑄 +Q 𝑅)) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}
7065, 69eqtrdi 2226 . . . . 5 (𝜑 → (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) = {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))})
7170eleq2d 2247 . . . 4 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ (𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))}))
72 oveq1 5881 . . . . . . . 8 (𝑙 = (𝐹𝑄) → (𝑙 +Q 𝑞) = ((𝐹𝑄) +Q 𝑞))
7372breq1d 4013 . . . . . . 7 (𝑙 = (𝐹𝑄) → ((𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7473rexbidv 2478 . . . . . 6 (𝑙 = (𝐹𝑄) → (∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅)) ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7574elrab3 2894 . . . . 5 ((𝐹𝑄) ∈ Q → ((𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7635, 75syl 14 . . . 4 (𝜑 → ((𝐹𝑄) ∈ {𝑙Q ∣ ∃𝑞Q (𝑙 +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))} ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7771, 76bitrd 188 . . 3 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ∃𝑞Q ((𝐹𝑄) +Q 𝑞) <Q ((𝐹𝑞) +Q (𝑄 +Q 𝑅))))
7859, 77mpbird 167 . 2 (𝜑 → (𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
7927, 5, 60, 61cauappcvgprlemcl 7651 . . . 4 (𝜑𝐿P)
80 nqprlu 7545 . . . . 5 ((𝑄 +Q 𝑅) ∈ Q → ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P)
8163, 80syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P)
82 addclpr 7535 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P)
8379, 81, 82syl2anc 411 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P)
84 nqprl 7549 . . 3 (((𝐹𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩) ∈ P) → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
8535, 83, 84syl2anc 411 . 2 (𝜑 → ((𝐹𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩)))
8678, 85mpbid 147 1 (𝜑 → ⟨{𝑙𝑙 <Q (𝐹𝑄)}, {𝑢 ∣ (𝐹𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑄 +Q 𝑅)}, {𝑢 ∣ (𝑄 +Q 𝑅) <Q 𝑢}⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  {crab 2459  cop 3595   class class class wbr 4003  wf 5212  cfv 5216  (class class class)co 5874  1st c1st 6138  Qcnq 7278   +Q cplq 7280   <Q cltq 7283  Pcnp 7289   +P cpp 7291  <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iplp 7466  df-iltp 7468
This theorem is referenced by:  cauappcvgprlemlim  7659
  Copyright terms: Public domain W3C validator