Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > m1expo | GIF version |
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
Ref | Expression |
---|---|
m1expo | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 11810 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
2 | oveq2 5850 | . . . . . . 7 ⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | |
3 | 2 | eqcoms 2168 | . . . . . 6 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
4 | neg1cn 8962 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 ∈ ℂ) |
6 | neg1ap0 8966 | . . . . . . . . . 10 ⊢ -1 # 0 | |
7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 # 0) |
8 | 2z 9219 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
10 | id 19 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
11 | 9, 10 | zmulcld 9319 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
12 | 5, 7, 11 | expp1zapd 10597 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1)) |
13 | m1expeven 10502 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1) | |
14 | 13 | oveq1d 5857 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1)) |
15 | 4 | mulid2i 7902 | . . . . . . . . 9 ⊢ (1 · -1) = -1 |
16 | 14, 15 | eqtrdi 2215 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1) |
17 | 12, 16 | eqtrd 2198 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1) |
18 | 17 | adantl 275 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1) |
19 | 3, 18 | sylan9eqr 2221 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
20 | 19 | ex 114 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
21 | 20 | rexlimdva 2583 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
22 | 1, 21 | sylbid 149 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1)) |
23 | 22 | imp 123 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 -cneg 8070 # cap 8479 2c2 8908 ℤcz 9191 ↑cexp 10454 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-xor 1366 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |