![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > m1expo | GIF version |
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
Ref | Expression |
---|---|
m1expo | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 12017 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
2 | oveq2 5927 | . . . . . . 7 ⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | |
3 | 2 | eqcoms 2196 | . . . . . 6 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
4 | neg1cn 9089 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 ∈ ℂ) |
6 | neg1ap0 9093 | . . . . . . . . . 10 ⊢ -1 # 0 | |
7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 # 0) |
8 | 2z 9348 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
10 | id 19 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
11 | 9, 10 | zmulcld 9448 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
12 | 5, 7, 11 | expp1zapd 10756 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1)) |
13 | m1expeven 10660 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1) | |
14 | 13 | oveq1d 5934 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1)) |
15 | 4 | mullidi 8024 | . . . . . . . . 9 ⊢ (1 · -1) = -1 |
16 | 14, 15 | eqtrdi 2242 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1) |
17 | 12, 16 | eqtrd 2226 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1) |
18 | 17 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1) |
19 | 3, 18 | sylan9eqr 2248 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
20 | 19 | ex 115 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
21 | 20 | rexlimdva 2611 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
22 | 1, 21 | sylbid 150 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1)) |
23 | 22 | imp 124 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∃wrex 2473 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 -cneg 8193 # cap 8602 2c2 9035 ℤcz 9320 ↑cexp 10612 ∥ cdvds 11933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-seqfrec 10522 df-exp 10613 df-dvds 11934 |
This theorem is referenced by: 2lgsoddprm 15270 |
Copyright terms: Public domain | W3C validator |