![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > m1expo | GIF version |
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
Ref | Expression |
---|---|
m1expo | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 11212 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
2 | oveq2 5674 | . . . . . . 7 ⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | |
3 | 2 | eqcoms 2092 | . . . . . 6 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
4 | neg1cn 8588 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 ∈ ℂ) |
6 | neg1ap0 8592 | . . . . . . . . . 10 ⊢ -1 # 0 | |
7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 # 0) |
8 | 2z 8839 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
9 | 8 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
10 | id 19 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
11 | 9, 10 | zmulcld 8935 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
12 | 5, 7, 11 | expp1zapd 10156 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1)) |
13 | m1expeven 10063 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1) | |
14 | 13 | oveq1d 5681 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1)) |
15 | 4 | mulid2i 7552 | . . . . . . . . 9 ⊢ (1 · -1) = -1 |
16 | 14, 15 | syl6eq 2137 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1) |
17 | 12, 16 | eqtrd 2121 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1) |
18 | 17 | adantl 272 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1) |
19 | 3, 18 | sylan9eqr 2143 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
20 | 19 | ex 114 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
21 | 20 | rexlimdva 2490 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
22 | 1, 21 | sylbid 149 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1)) |
23 | 22 | imp 123 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1290 ∈ wcel 1439 ∃wrex 2361 class class class wbr 3851 (class class class)co 5666 ℂcc 7409 0cc0 7411 1c1 7412 + caddc 7414 · cmul 7416 -cneg 7715 # cap 8119 2c2 8534 ℤcz 8811 ↑cexp 10015 ∥ cdvds 11135 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-xor 1313 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-inn 8484 df-2 8542 df-n0 8735 df-z 8812 df-uz 9081 df-iseq 9914 df-seq3 9915 df-exp 10016 df-dvds 11136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |