ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1expo GIF version

Theorem m1expo 11837
Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
Assertion
Ref Expression
m1expo ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)

Proof of Theorem m1expo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 11810 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 oveq2 5850 . . . . . . 7 (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
32eqcoms 2168 . . . . . 6 (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1)))
4 neg1cn 8962 . . . . . . . . . 10 -1 ∈ ℂ
54a1i 9 . . . . . . . . 9 (𝑛 ∈ ℤ → -1 ∈ ℂ)
6 neg1ap0 8966 . . . . . . . . . 10 -1 # 0
76a1i 9 . . . . . . . . 9 (𝑛 ∈ ℤ → -1 # 0)
8 2z 9219 . . . . . . . . . . 11 2 ∈ ℤ
98a1i 9 . . . . . . . . . 10 (𝑛 ∈ ℤ → 2 ∈ ℤ)
10 id 19 . . . . . . . . . 10 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
119, 10zmulcld 9319 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
125, 7, 11expp1zapd 10597 . . . . . . . 8 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1))
13 m1expeven 10502 . . . . . . . . . 10 (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1)
1413oveq1d 5857 . . . . . . . . 9 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1))
154mulid2i 7902 . . . . . . . . 9 (1 · -1) = -1
1614, 15eqtrdi 2215 . . . . . . . 8 (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1)
1712, 16eqtrd 2198 . . . . . . 7 (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1)
1817adantl 275 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1)
193, 18sylan9eqr 2221 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1)
2019ex 114 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1))
2120rexlimdva 2583 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1))
221, 21sylbid 149 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1))
2322imp 123 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  -cneg 8070   # cap 8479  2c2 8908  cz 9191  cexp 10454  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-xor 1366  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator