| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1expo | GIF version | ||
| Description: Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| m1expo | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odd2np1 12370 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)) | |
| 2 | oveq2 6002 | . . . . . . 7 ⊢ (𝑁 = ((2 · 𝑛) + 1) → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) | |
| 3 | 2 | eqcoms 2232 | . . . . . 6 ⊢ (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = (-1↑((2 · 𝑛) + 1))) |
| 4 | neg1cn 9203 | . . . . . . . . . 10 ⊢ -1 ∈ ℂ | |
| 5 | 4 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 ∈ ℂ) |
| 6 | neg1ap0 9207 | . . . . . . . . . 10 ⊢ -1 # 0 | |
| 7 | 6 | a1i 9 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → -1 # 0) |
| 8 | 2z 9462 | . . . . . . . . . . 11 ⊢ 2 ∈ ℤ | |
| 9 | 8 | a1i 9 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 2 ∈ ℤ) |
| 10 | id 19 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℤ) | |
| 11 | 9, 10 | zmulcld 9563 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ) |
| 12 | 5, 7, 11 | expp1zapd 10891 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = ((-1↑(2 · 𝑛)) · -1)) |
| 13 | m1expeven 10795 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℤ → (-1↑(2 · 𝑛)) = 1) | |
| 14 | 13 | oveq1d 6009 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = (1 · -1)) |
| 15 | 4 | mullidi 8137 | . . . . . . . . 9 ⊢ (1 · -1) = -1 |
| 16 | 14, 15 | eqtrdi 2278 | . . . . . . . 8 ⊢ (𝑛 ∈ ℤ → ((-1↑(2 · 𝑛)) · -1) = -1) |
| 17 | 12, 16 | eqtrd 2262 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → (-1↑((2 · 𝑛) + 1)) = -1) |
| 18 | 17 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (-1↑((2 · 𝑛) + 1)) = -1) |
| 19 | 3, 18 | sylan9eqr 2284 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (-1↑𝑁) = -1) |
| 20 | 19 | ex 115 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
| 21 | 20 | rexlimdva 2648 | . . 3 ⊢ (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (-1↑𝑁) = -1)) |
| 22 | 1, 21 | sylbid 150 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (-1↑𝑁) = -1)) |
| 23 | 22 | imp 124 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 class class class wbr 4082 (class class class)co 5994 ℂcc 7985 0cc0 7987 1c1 7988 + caddc 7990 · cmul 7992 -cneg 8306 # cap 8716 2c2 9149 ℤcz 9434 ↑cexp 10747 ∥ cdvds 12284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-xor 1418 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-exp 10748 df-dvds 12285 |
| This theorem is referenced by: 2lgsoddprm 15777 |
| Copyright terms: Public domain | W3C validator |