![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fihashfn | GIF version |
Description: A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.) |
Ref | Expression |
---|---|
fihashfn | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmeng 6457 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐴 ≈ 𝐹) | |
2 | 1 | ensymd 6430 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ≈ 𝐴) |
3 | fnfi 6571 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | |
4 | hashen 10027 | . . 3 ⊢ ((𝐹 ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘𝐹) = (♯‘𝐴) ↔ 𝐹 ≈ 𝐴)) | |
5 | 3, 4 | sylancom 411 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → ((♯‘𝐹) = (♯‘𝐴) ↔ 𝐹 ≈ 𝐴)) |
6 | 2, 5 | mpbird 165 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → (♯‘𝐹) = (♯‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 class class class wbr 3811 Fn wfn 4964 ‘cfv 4969 ≈ cen 6385 Fincfn 6387 ♯chash 10018 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-addcom 7348 ax-addass 7350 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-0id 7356 ax-rnegex 7357 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-ltadd 7364 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-if 3374 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-id 4084 df-iord 4157 df-on 4159 df-ilim 4160 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-recs 6002 df-frec 6088 df-1o 6113 df-er 6222 df-en 6388 df-dom 6389 df-fin 6390 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-inn 8317 df-n0 8566 df-z 8647 df-uz 8915 df-ihash 10019 |
This theorem is referenced by: fseq1hash 10044 fnfz0hash 10071 ffzo0hash 10073 |
Copyright terms: Public domain | W3C validator |