Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf GIF version

Theorem apdifflemf 13414
Description: Lemma for apdiff 13416. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a (𝜑𝐴 ∈ ℝ)
apdifflemf.q (𝜑𝑄 ∈ ℚ)
apdifflemf.r (𝜑𝑅 ∈ ℚ)
apdifflemf.qr (𝜑𝑄 < 𝑅)
apdifflemf.ap (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
Assertion
Ref Expression
apdifflemf (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 7818 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 apdifflemf.r . . . . . . 7 (𝜑𝑅 ∈ ℚ)
4 qcn 9453 . . . . . . 7 (𝑅 ∈ ℚ → 𝑅 ∈ ℂ)
53, 4syl 14 . . . . . 6 (𝜑𝑅 ∈ ℂ)
62, 5subcld 8097 . . . . 5 (𝜑 → (𝐴𝑅) ∈ ℂ)
76adantr 274 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝐴𝑅) ∈ ℂ)
87abscld 10985 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) ∈ ℝ)
9 apdifflemf.q . . . . . . 7 (𝜑𝑄 ∈ ℚ)
10 qcn 9453 . . . . . . 7 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
119, 10syl 14 . . . . . 6 (𝜑𝑄 ∈ ℂ)
122, 11subcld 8097 . . . . 5 (𝜑 → (𝐴𝑄) ∈ ℂ)
1312abscld 10985 . . . 4 (𝜑 → (abs‘(𝐴𝑄)) ∈ ℝ)
1413adantr 274 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) ∈ ℝ)
15 qre 9444 . . . . . . . . . 10 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
169, 15syl 14 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
1716adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℝ)
181adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℝ)
19 qaddcl 9454 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
209, 3, 19syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 𝑅) ∈ ℚ)
21 qre 9444 . . . . . . . . . . . . 13 ((𝑄 + 𝑅) ∈ ℚ → (𝑄 + 𝑅) ∈ ℝ)
2220, 21syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 𝑅) ∈ ℝ)
2322rehalfcld 8990 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 𝑅) / 2) ∈ ℝ)
2423adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
25 apdifflemf.qr . . . . . . . . . . . 12 (𝜑𝑄 < 𝑅)
26 qre 9444 . . . . . . . . . . . . . 14 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
273, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
28 avglt1 8982 . . . . . . . . . . . . 13 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
2916, 27, 28syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
3025, 29mpbid 146 . . . . . . . . . . 11 (𝜑𝑄 < ((𝑄 + 𝑅) / 2))
3130adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < ((𝑄 + 𝑅) / 2))
32 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) < 𝐴)
3317, 24, 18, 31, 32lttrd 7912 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝐴)
3417, 18, 33ltled 7905 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄𝐴)
3517, 18, 34abssubge0d 10980 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
3635oveq2d 5798 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = (𝑅 − (𝐴𝑄)))
375adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℂ)
382adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℂ)
3911adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℂ)
4037, 38, 39subsub3d 8127 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (𝐴𝑄)) = ((𝑅 + 𝑄) − 𝐴))
4137, 39addcomd 7937 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + 𝑄) = (𝑄 + 𝑅))
4241oveq1d 5797 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑅 + 𝑄) − 𝐴) = ((𝑄 + 𝑅) − 𝐴))
4336, 40, 423eqtrd 2177 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = ((𝑄 + 𝑅) − 𝐴))
4422adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) ∈ ℝ)
45 2rp 9475 . . . . . . . . . 10 2 ∈ ℝ+
4645a1i 9 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 2 ∈ ℝ+)
4744, 18, 46ltdivmuld 9565 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) / 2) < 𝐴 ↔ (𝑄 + 𝑅) < (2 · 𝐴)))
4832, 47mpbid 146 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (2 · 𝐴))
49382timesd 8986 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (2 · 𝐴) = (𝐴 + 𝐴))
5048, 49breqtrd 3962 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (𝐴 + 𝐴))
5144, 18, 18ltsubaddd 8327 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) − 𝐴) < 𝐴 ↔ (𝑄 + 𝑅) < (𝐴 + 𝐴)))
5250, 51mpbird 166 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) − 𝐴) < 𝐴)
5343, 52eqbrtrd 3958 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) < 𝐴)
5425adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝑅)
5527adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℝ)
56 difrp 9509 . . . . . . . 8 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5717, 55, 56syl2anc 409 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5854, 57mpbid 146 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅𝑄) ∈ ℝ+)
5918, 58ltaddrpd 9547 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝐴 + (𝑅𝑄)))
6035oveq2d 5798 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝑅 + (𝐴𝑄)))
6137, 38, 39addsub12d 8120 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (𝐴𝑄)) = (𝐴 + (𝑅𝑄)))
6260, 61eqtrd 2173 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝐴 + (𝑅𝑄)))
6359, 62breqtrrd 3964 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝑅 + (abs‘(𝐴𝑄))))
6418, 55, 14absdifltd 10982 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)) ↔ ((𝑅 − (abs‘(𝐴𝑄))) < 𝐴𝐴 < (𝑅 + (abs‘(𝐴𝑄))))))
6553, 63, 64mpbir2and 929 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)))
668, 14, 65gtapd 8423 . 2 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
6713adantr 274 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) ∈ ℝ)
686adantr 274 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴𝑅) ∈ ℂ)
6968abscld 10985 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) ∈ ℝ)
7011, 5, 2subsubd 8125 . . . . . . 7 (𝜑 → (𝑄 − (𝑅𝐴)) = ((𝑄𝑅) + 𝐴))
7116, 27sublt0d 8356 . . . . . . . . 9 (𝜑 → ((𝑄𝑅) < 0 ↔ 𝑄 < 𝑅))
7225, 71mpbird 166 . . . . . . . 8 (𝜑 → (𝑄𝑅) < 0)
7316, 27resubcld 8167 . . . . . . . . 9 (𝜑 → (𝑄𝑅) ∈ ℝ)
74 ltaddnegr 8211 . . . . . . . . 9 (((𝑄𝑅) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7573, 1, 74syl2anc 409 . . . . . . . 8 (𝜑 → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7672, 75mpbid 146 . . . . . . 7 (𝜑 → ((𝑄𝑅) + 𝐴) < 𝐴)
7770, 76eqbrtrd 3958 . . . . . 6 (𝜑 → (𝑄 − (𝑅𝐴)) < 𝐴)
7877adantr 274 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 − (𝑅𝐴)) < 𝐴)
791adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℝ)
8022adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 + 𝑅) ∈ ℝ)
81 simpr 109 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) / 2))
8279, 79, 80, 81, 81lt2halvesd 8991 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴 + 𝐴) < (𝑄 + 𝑅))
8379, 79, 80ltaddsub2d 8332 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝐴 + 𝐴) < (𝑄 + 𝑅) ↔ 𝐴 < ((𝑄 + 𝑅) − 𝐴)))
8482, 83mpbid 146 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) − 𝐴))
8511adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℂ)
865adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℂ)
872adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℂ)
8885, 86, 87addsubassd 8117 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) − 𝐴) = (𝑄 + (𝑅𝐴)))
8984, 88breqtrd 3962 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < (𝑄 + (𝑅𝐴)))
9016adantr 274 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℝ)
9127adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℝ)
9291, 79resubcld 8167 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑅𝐴) ∈ ℝ)
9379, 90, 92absdifltd 10982 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((abs‘(𝐴𝑄)) < (𝑅𝐴) ↔ ((𝑄 − (𝑅𝐴)) < 𝐴𝐴 < (𝑄 + (𝑅𝐴)))))
9478, 89, 93mpbir2and 929 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (𝑅𝐴))
9523adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
96 avglt2 8983 . . . . . . . . . 10 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9716, 27, 96syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9825, 97mpbid 146 . . . . . . . 8 (𝜑 → ((𝑄 + 𝑅) / 2) < 𝑅)
9998adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) < 𝑅)
10079, 95, 91, 81, 99lttrd 7912 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < 𝑅)
10179, 91, 100ltled 7905 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴𝑅)
10279, 91, 101abssuble0d 10981 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) = (𝑅𝐴))
10394, 102breqtrrd 3964 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (abs‘(𝐴𝑅)))
10467, 69, 103ltapd 8424 . 2 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
105 apdifflemf.ap . . 3 (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
106 reaplt 8374 . . . 4 ((((𝑄 + 𝑅) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
10723, 1, 106syl2anc 409 . . 3 (𝜑 → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
108105, 107mpbid 146 . 2 (𝜑 → (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2)))
10966, 104, 108mpjaodan 788 1 (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 1481   class class class wbr 3937  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644   + caddc 7647   · cmul 7649   < clt 7824  cmin 7957   # cap 8367   / cdiv 8456  2c2 8795  cq 9438  +crp 9470  abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  apdiff  13416
  Copyright terms: Public domain W3C validator