Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf GIF version

Theorem apdifflemf 14040
Description: Lemma for apdiff 14042. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a (𝜑𝐴 ∈ ℝ)
apdifflemf.q (𝜑𝑄 ∈ ℚ)
apdifflemf.r (𝜑𝑅 ∈ ℚ)
apdifflemf.qr (𝜑𝑄 < 𝑅)
apdifflemf.ap (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
Assertion
Ref Expression
apdifflemf (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 7937 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 apdifflemf.r . . . . . . 7 (𝜑𝑅 ∈ ℚ)
4 qcn 9582 . . . . . . 7 (𝑅 ∈ ℚ → 𝑅 ∈ ℂ)
53, 4syl 14 . . . . . 6 (𝜑𝑅 ∈ ℂ)
62, 5subcld 8219 . . . . 5 (𝜑 → (𝐴𝑅) ∈ ℂ)
76adantr 274 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝐴𝑅) ∈ ℂ)
87abscld 11134 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) ∈ ℝ)
9 apdifflemf.q . . . . . . 7 (𝜑𝑄 ∈ ℚ)
10 qcn 9582 . . . . . . 7 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
119, 10syl 14 . . . . . 6 (𝜑𝑄 ∈ ℂ)
122, 11subcld 8219 . . . . 5 (𝜑 → (𝐴𝑄) ∈ ℂ)
1312abscld 11134 . . . 4 (𝜑 → (abs‘(𝐴𝑄)) ∈ ℝ)
1413adantr 274 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) ∈ ℝ)
15 qre 9573 . . . . . . . . . 10 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
169, 15syl 14 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
1716adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℝ)
181adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℝ)
19 qaddcl 9583 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
209, 3, 19syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 𝑅) ∈ ℚ)
21 qre 9573 . . . . . . . . . . . . 13 ((𝑄 + 𝑅) ∈ ℚ → (𝑄 + 𝑅) ∈ ℝ)
2220, 21syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 𝑅) ∈ ℝ)
2322rehalfcld 9113 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 𝑅) / 2) ∈ ℝ)
2423adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
25 apdifflemf.qr . . . . . . . . . . . 12 (𝜑𝑄 < 𝑅)
26 qre 9573 . . . . . . . . . . . . . 14 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
273, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
28 avglt1 9105 . . . . . . . . . . . . 13 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
2916, 27, 28syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
3025, 29mpbid 146 . . . . . . . . . . 11 (𝜑𝑄 < ((𝑄 + 𝑅) / 2))
3130adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < ((𝑄 + 𝑅) / 2))
32 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) < 𝐴)
3317, 24, 18, 31, 32lttrd 8034 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝐴)
3417, 18, 33ltled 8027 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄𝐴)
3517, 18, 34abssubge0d 11129 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
3635oveq2d 5867 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = (𝑅 − (𝐴𝑄)))
375adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℂ)
382adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℂ)
3911adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℂ)
4037, 38, 39subsub3d 8249 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (𝐴𝑄)) = ((𝑅 + 𝑄) − 𝐴))
4137, 39addcomd 8059 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + 𝑄) = (𝑄 + 𝑅))
4241oveq1d 5866 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑅 + 𝑄) − 𝐴) = ((𝑄 + 𝑅) − 𝐴))
4336, 40, 423eqtrd 2207 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = ((𝑄 + 𝑅) − 𝐴))
4422adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) ∈ ℝ)
45 2rp 9604 . . . . . . . . . 10 2 ∈ ℝ+
4645a1i 9 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 2 ∈ ℝ+)
4744, 18, 46ltdivmuld 9694 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) / 2) < 𝐴 ↔ (𝑄 + 𝑅) < (2 · 𝐴)))
4832, 47mpbid 146 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (2 · 𝐴))
49382timesd 9109 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (2 · 𝐴) = (𝐴 + 𝐴))
5048, 49breqtrd 4013 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (𝐴 + 𝐴))
5144, 18, 18ltsubaddd 8449 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) − 𝐴) < 𝐴 ↔ (𝑄 + 𝑅) < (𝐴 + 𝐴)))
5250, 51mpbird 166 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) − 𝐴) < 𝐴)
5343, 52eqbrtrd 4009 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) < 𝐴)
5425adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝑅)
5527adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℝ)
56 difrp 9638 . . . . . . . 8 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5717, 55, 56syl2anc 409 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5854, 57mpbid 146 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅𝑄) ∈ ℝ+)
5918, 58ltaddrpd 9676 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝐴 + (𝑅𝑄)))
6035oveq2d 5867 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝑅 + (𝐴𝑄)))
6137, 38, 39addsub12d 8242 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (𝐴𝑄)) = (𝐴 + (𝑅𝑄)))
6260, 61eqtrd 2203 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝐴 + (𝑅𝑄)))
6359, 62breqtrrd 4015 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝑅 + (abs‘(𝐴𝑄))))
6418, 55, 14absdifltd 11131 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)) ↔ ((𝑅 − (abs‘(𝐴𝑄))) < 𝐴𝐴 < (𝑅 + (abs‘(𝐴𝑄))))))
6553, 63, 64mpbir2and 939 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)))
668, 14, 65gtapd 8545 . 2 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
6713adantr 274 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) ∈ ℝ)
686adantr 274 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴𝑅) ∈ ℂ)
6968abscld 11134 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) ∈ ℝ)
7011, 5, 2subsubd 8247 . . . . . . 7 (𝜑 → (𝑄 − (𝑅𝐴)) = ((𝑄𝑅) + 𝐴))
7116, 27sublt0d 8478 . . . . . . . . 9 (𝜑 → ((𝑄𝑅) < 0 ↔ 𝑄 < 𝑅))
7225, 71mpbird 166 . . . . . . . 8 (𝜑 → (𝑄𝑅) < 0)
7316, 27resubcld 8289 . . . . . . . . 9 (𝜑 → (𝑄𝑅) ∈ ℝ)
74 ltaddnegr 8333 . . . . . . . . 9 (((𝑄𝑅) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7573, 1, 74syl2anc 409 . . . . . . . 8 (𝜑 → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7672, 75mpbid 146 . . . . . . 7 (𝜑 → ((𝑄𝑅) + 𝐴) < 𝐴)
7770, 76eqbrtrd 4009 . . . . . 6 (𝜑 → (𝑄 − (𝑅𝐴)) < 𝐴)
7877adantr 274 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 − (𝑅𝐴)) < 𝐴)
791adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℝ)
8022adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 + 𝑅) ∈ ℝ)
81 simpr 109 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) / 2))
8279, 79, 80, 81, 81lt2halvesd 9114 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴 + 𝐴) < (𝑄 + 𝑅))
8379, 79, 80ltaddsub2d 8454 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝐴 + 𝐴) < (𝑄 + 𝑅) ↔ 𝐴 < ((𝑄 + 𝑅) − 𝐴)))
8482, 83mpbid 146 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) − 𝐴))
8511adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℂ)
865adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℂ)
872adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℂ)
8885, 86, 87addsubassd 8239 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) − 𝐴) = (𝑄 + (𝑅𝐴)))
8984, 88breqtrd 4013 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < (𝑄 + (𝑅𝐴)))
9016adantr 274 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℝ)
9127adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℝ)
9291, 79resubcld 8289 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑅𝐴) ∈ ℝ)
9379, 90, 92absdifltd 11131 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((abs‘(𝐴𝑄)) < (𝑅𝐴) ↔ ((𝑄 − (𝑅𝐴)) < 𝐴𝐴 < (𝑄 + (𝑅𝐴)))))
9478, 89, 93mpbir2and 939 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (𝑅𝐴))
9523adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
96 avglt2 9106 . . . . . . . . . 10 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9716, 27, 96syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9825, 97mpbid 146 . . . . . . . 8 (𝜑 → ((𝑄 + 𝑅) / 2) < 𝑅)
9998adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) < 𝑅)
10079, 95, 91, 81, 99lttrd 8034 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < 𝑅)
10179, 91, 100ltled 8027 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴𝑅)
10279, 91, 101abssuble0d 11130 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) = (𝑅𝐴))
10394, 102breqtrrd 4015 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (abs‘(𝐴𝑅)))
10467, 69, 103ltapd 8546 . 2 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
105 apdifflemf.ap . . 3 (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
106 reaplt 8496 . . . 4 ((((𝑄 + 𝑅) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
10723, 1, 106syl2anc 409 . . 3 (𝜑 → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
108105, 107mpbid 146 . 2 (𝜑 → (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2)))
10966, 104, 108mpjaodan 793 1 (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 703  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5851  cc 7761  cr 7762  0cc0 7763   + caddc 7766   · cmul 7768   < clt 7943  cmin 8079   # cap 8489   / cdiv 8578  2c2 8918  cq 9567  +crp 9599  abscabs 10950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-mulrcl 7862  ax-addcom 7863  ax-mulcom 7864  ax-addass 7865  ax-mulass 7866  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-1rid 7870  ax-0id 7871  ax-rnegex 7872  ax-precex 7873  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-apti 7878  ax-pre-ltadd 7879  ax-pre-mulgt0 7880  ax-pre-mulext 7881  ax-arch 7882  ax-caucvg 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-reap 8483  df-ap 8490  df-div 8579  df-inn 8868  df-2 8926  df-3 8927  df-4 8928  df-n0 9125  df-z 9202  df-uz 9477  df-q 9568  df-rp 9600  df-seqfrec 10391  df-exp 10465  df-cj 10795  df-re 10796  df-im 10797  df-rsqrt 10951  df-abs 10952
This theorem is referenced by:  apdiff  14042
  Copyright terms: Public domain W3C validator