Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf GIF version

Theorem apdifflemf 13558
Description: Lemma for apdiff 13560. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a (𝜑𝐴 ∈ ℝ)
apdifflemf.q (𝜑𝑄 ∈ ℚ)
apdifflemf.r (𝜑𝑅 ∈ ℚ)
apdifflemf.qr (𝜑𝑄 < 𝑅)
apdifflemf.ap (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
Assertion
Ref Expression
apdifflemf (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 7885 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 apdifflemf.r . . . . . . 7 (𝜑𝑅 ∈ ℚ)
4 qcn 9521 . . . . . . 7 (𝑅 ∈ ℚ → 𝑅 ∈ ℂ)
53, 4syl 14 . . . . . 6 (𝜑𝑅 ∈ ℂ)
62, 5subcld 8165 . . . . 5 (𝜑 → (𝐴𝑅) ∈ ℂ)
76adantr 274 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝐴𝑅) ∈ ℂ)
87abscld 11058 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) ∈ ℝ)
9 apdifflemf.q . . . . . . 7 (𝜑𝑄 ∈ ℚ)
10 qcn 9521 . . . . . . 7 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
119, 10syl 14 . . . . . 6 (𝜑𝑄 ∈ ℂ)
122, 11subcld 8165 . . . . 5 (𝜑 → (𝐴𝑄) ∈ ℂ)
1312abscld 11058 . . . 4 (𝜑 → (abs‘(𝐴𝑄)) ∈ ℝ)
1413adantr 274 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) ∈ ℝ)
15 qre 9512 . . . . . . . . . 10 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
169, 15syl 14 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
1716adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℝ)
181adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℝ)
19 qaddcl 9522 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
209, 3, 19syl2anc 409 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 𝑅) ∈ ℚ)
21 qre 9512 . . . . . . . . . . . . 13 ((𝑄 + 𝑅) ∈ ℚ → (𝑄 + 𝑅) ∈ ℝ)
2220, 21syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 𝑅) ∈ ℝ)
2322rehalfcld 9058 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 𝑅) / 2) ∈ ℝ)
2423adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
25 apdifflemf.qr . . . . . . . . . . . 12 (𝜑𝑄 < 𝑅)
26 qre 9512 . . . . . . . . . . . . . 14 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
273, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
28 avglt1 9050 . . . . . . . . . . . . 13 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
2916, 27, 28syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
3025, 29mpbid 146 . . . . . . . . . . 11 (𝜑𝑄 < ((𝑄 + 𝑅) / 2))
3130adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < ((𝑄 + 𝑅) / 2))
32 simpr 109 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) < 𝐴)
3317, 24, 18, 31, 32lttrd 7980 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝐴)
3417, 18, 33ltled 7973 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄𝐴)
3517, 18, 34abssubge0d 11053 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
3635oveq2d 5830 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = (𝑅 − (𝐴𝑄)))
375adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℂ)
382adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℂ)
3911adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℂ)
4037, 38, 39subsub3d 8195 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (𝐴𝑄)) = ((𝑅 + 𝑄) − 𝐴))
4137, 39addcomd 8005 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + 𝑄) = (𝑄 + 𝑅))
4241oveq1d 5829 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑅 + 𝑄) − 𝐴) = ((𝑄 + 𝑅) − 𝐴))
4336, 40, 423eqtrd 2191 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = ((𝑄 + 𝑅) − 𝐴))
4422adantr 274 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) ∈ ℝ)
45 2rp 9543 . . . . . . . . . 10 2 ∈ ℝ+
4645a1i 9 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 2 ∈ ℝ+)
4744, 18, 46ltdivmuld 9633 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) / 2) < 𝐴 ↔ (𝑄 + 𝑅) < (2 · 𝐴)))
4832, 47mpbid 146 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (2 · 𝐴))
49382timesd 9054 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (2 · 𝐴) = (𝐴 + 𝐴))
5048, 49breqtrd 3986 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (𝐴 + 𝐴))
5144, 18, 18ltsubaddd 8395 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) − 𝐴) < 𝐴 ↔ (𝑄 + 𝑅) < (𝐴 + 𝐴)))
5250, 51mpbird 166 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) − 𝐴) < 𝐴)
5343, 52eqbrtrd 3982 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) < 𝐴)
5425adantr 274 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝑅)
5527adantr 274 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℝ)
56 difrp 9577 . . . . . . . 8 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5717, 55, 56syl2anc 409 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5854, 57mpbid 146 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅𝑄) ∈ ℝ+)
5918, 58ltaddrpd 9615 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝐴 + (𝑅𝑄)))
6035oveq2d 5830 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝑅 + (𝐴𝑄)))
6137, 38, 39addsub12d 8188 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (𝐴𝑄)) = (𝐴 + (𝑅𝑄)))
6260, 61eqtrd 2187 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝐴 + (𝑅𝑄)))
6359, 62breqtrrd 3988 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝑅 + (abs‘(𝐴𝑄))))
6418, 55, 14absdifltd 11055 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)) ↔ ((𝑅 − (abs‘(𝐴𝑄))) < 𝐴𝐴 < (𝑅 + (abs‘(𝐴𝑄))))))
6553, 63, 64mpbir2and 929 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)))
668, 14, 65gtapd 8491 . 2 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
6713adantr 274 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) ∈ ℝ)
686adantr 274 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴𝑅) ∈ ℂ)
6968abscld 11058 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) ∈ ℝ)
7011, 5, 2subsubd 8193 . . . . . . 7 (𝜑 → (𝑄 − (𝑅𝐴)) = ((𝑄𝑅) + 𝐴))
7116, 27sublt0d 8424 . . . . . . . . 9 (𝜑 → ((𝑄𝑅) < 0 ↔ 𝑄 < 𝑅))
7225, 71mpbird 166 . . . . . . . 8 (𝜑 → (𝑄𝑅) < 0)
7316, 27resubcld 8235 . . . . . . . . 9 (𝜑 → (𝑄𝑅) ∈ ℝ)
74 ltaddnegr 8279 . . . . . . . . 9 (((𝑄𝑅) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7573, 1, 74syl2anc 409 . . . . . . . 8 (𝜑 → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7672, 75mpbid 146 . . . . . . 7 (𝜑 → ((𝑄𝑅) + 𝐴) < 𝐴)
7770, 76eqbrtrd 3982 . . . . . 6 (𝜑 → (𝑄 − (𝑅𝐴)) < 𝐴)
7877adantr 274 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 − (𝑅𝐴)) < 𝐴)
791adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℝ)
8022adantr 274 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 + 𝑅) ∈ ℝ)
81 simpr 109 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) / 2))
8279, 79, 80, 81, 81lt2halvesd 9059 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴 + 𝐴) < (𝑄 + 𝑅))
8379, 79, 80ltaddsub2d 8400 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝐴 + 𝐴) < (𝑄 + 𝑅) ↔ 𝐴 < ((𝑄 + 𝑅) − 𝐴)))
8482, 83mpbid 146 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) − 𝐴))
8511adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℂ)
865adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℂ)
872adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℂ)
8885, 86, 87addsubassd 8185 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) − 𝐴) = (𝑄 + (𝑅𝐴)))
8984, 88breqtrd 3986 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < (𝑄 + (𝑅𝐴)))
9016adantr 274 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℝ)
9127adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℝ)
9291, 79resubcld 8235 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑅𝐴) ∈ ℝ)
9379, 90, 92absdifltd 11055 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((abs‘(𝐴𝑄)) < (𝑅𝐴) ↔ ((𝑄 − (𝑅𝐴)) < 𝐴𝐴 < (𝑄 + (𝑅𝐴)))))
9478, 89, 93mpbir2and 929 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (𝑅𝐴))
9523adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
96 avglt2 9051 . . . . . . . . . 10 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9716, 27, 96syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9825, 97mpbid 146 . . . . . . . 8 (𝜑 → ((𝑄 + 𝑅) / 2) < 𝑅)
9998adantr 274 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) < 𝑅)
10079, 95, 91, 81, 99lttrd 7980 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < 𝑅)
10179, 91, 100ltled 7973 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴𝑅)
10279, 91, 101abssuble0d 11054 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) = (𝑅𝐴))
10394, 102breqtrrd 3988 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (abs‘(𝐴𝑅)))
10467, 69, 103ltapd 8492 . 2 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
105 apdifflemf.ap . . 3 (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
106 reaplt 8442 . . . 4 ((((𝑄 + 𝑅) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
10723, 1, 106syl2anc 409 . . 3 (𝜑 → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
108105, 107mpbid 146 . 2 (𝜑 → (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2)))
10966, 104, 108mpjaodan 788 1 (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2125   class class class wbr 3961  cfv 5163  (class class class)co 5814  cc 7709  cr 7710  0cc0 7711   + caddc 7714   · cmul 7716   < clt 7891  cmin 8025   # cap 8435   / cdiv 8524  2c2 8863  cq 9506  +crp 9538  abscabs 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876
This theorem is referenced by:  apdiff  13560
  Copyright terms: Public domain W3C validator