Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf GIF version

Theorem apdifflemf 15606
Description: Lemma for apdiff 15608. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a (𝜑𝐴 ∈ ℝ)
apdifflemf.q (𝜑𝑄 ∈ ℚ)
apdifflemf.r (𝜑𝑅 ∈ ℚ)
apdifflemf.qr (𝜑𝑄 < 𝑅)
apdifflemf.ap (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
Assertion
Ref Expression
apdifflemf (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 8050 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 apdifflemf.r . . . . . . 7 (𝜑𝑅 ∈ ℚ)
4 qcn 9702 . . . . . . 7 (𝑅 ∈ ℚ → 𝑅 ∈ ℂ)
53, 4syl 14 . . . . . 6 (𝜑𝑅 ∈ ℂ)
62, 5subcld 8332 . . . . 5 (𝜑 → (𝐴𝑅) ∈ ℂ)
76adantr 276 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝐴𝑅) ∈ ℂ)
87abscld 11328 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) ∈ ℝ)
9 apdifflemf.q . . . . . . 7 (𝜑𝑄 ∈ ℚ)
10 qcn 9702 . . . . . . 7 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
119, 10syl 14 . . . . . 6 (𝜑𝑄 ∈ ℂ)
122, 11subcld 8332 . . . . 5 (𝜑 → (𝐴𝑄) ∈ ℂ)
1312abscld 11328 . . . 4 (𝜑 → (abs‘(𝐴𝑄)) ∈ ℝ)
1413adantr 276 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) ∈ ℝ)
15 qre 9693 . . . . . . . . . 10 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
169, 15syl 14 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
1716adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℝ)
181adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℝ)
19 qaddcl 9703 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
209, 3, 19syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 𝑅) ∈ ℚ)
21 qre 9693 . . . . . . . . . . . . 13 ((𝑄 + 𝑅) ∈ ℚ → (𝑄 + 𝑅) ∈ ℝ)
2220, 21syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 𝑅) ∈ ℝ)
2322rehalfcld 9232 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 𝑅) / 2) ∈ ℝ)
2423adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
25 apdifflemf.qr . . . . . . . . . . . 12 (𝜑𝑄 < 𝑅)
26 qre 9693 . . . . . . . . . . . . . 14 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
273, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
28 avglt1 9224 . . . . . . . . . . . . 13 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
2916, 27, 28syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
3025, 29mpbid 147 . . . . . . . . . . 11 (𝜑𝑄 < ((𝑄 + 𝑅) / 2))
3130adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < ((𝑄 + 𝑅) / 2))
32 simpr 110 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) < 𝐴)
3317, 24, 18, 31, 32lttrd 8147 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝐴)
3417, 18, 33ltled 8140 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄𝐴)
3517, 18, 34abssubge0d 11323 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
3635oveq2d 5935 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = (𝑅 − (𝐴𝑄)))
375adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℂ)
382adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℂ)
3911adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℂ)
4037, 38, 39subsub3d 8362 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (𝐴𝑄)) = ((𝑅 + 𝑄) − 𝐴))
4137, 39addcomd 8172 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + 𝑄) = (𝑄 + 𝑅))
4241oveq1d 5934 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑅 + 𝑄) − 𝐴) = ((𝑄 + 𝑅) − 𝐴))
4336, 40, 423eqtrd 2230 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = ((𝑄 + 𝑅) − 𝐴))
4422adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) ∈ ℝ)
45 2rp 9727 . . . . . . . . . 10 2 ∈ ℝ+
4645a1i 9 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 2 ∈ ℝ+)
4744, 18, 46ltdivmuld 9817 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) / 2) < 𝐴 ↔ (𝑄 + 𝑅) < (2 · 𝐴)))
4832, 47mpbid 147 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (2 · 𝐴))
49382timesd 9228 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (2 · 𝐴) = (𝐴 + 𝐴))
5048, 49breqtrd 4056 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (𝐴 + 𝐴))
5144, 18, 18ltsubaddd 8562 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) − 𝐴) < 𝐴 ↔ (𝑄 + 𝑅) < (𝐴 + 𝐴)))
5250, 51mpbird 167 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) − 𝐴) < 𝐴)
5343, 52eqbrtrd 4052 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) < 𝐴)
5425adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝑅)
5527adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℝ)
56 difrp 9761 . . . . . . . 8 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5717, 55, 56syl2anc 411 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5854, 57mpbid 147 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅𝑄) ∈ ℝ+)
5918, 58ltaddrpd 9799 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝐴 + (𝑅𝑄)))
6035oveq2d 5935 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝑅 + (𝐴𝑄)))
6137, 38, 39addsub12d 8355 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (𝐴𝑄)) = (𝐴 + (𝑅𝑄)))
6260, 61eqtrd 2226 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝐴 + (𝑅𝑄)))
6359, 62breqtrrd 4058 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝑅 + (abs‘(𝐴𝑄))))
6418, 55, 14absdifltd 11325 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)) ↔ ((𝑅 − (abs‘(𝐴𝑄))) < 𝐴𝐴 < (𝑅 + (abs‘(𝐴𝑄))))))
6553, 63, 64mpbir2and 946 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)))
668, 14, 65gtapd 8658 . 2 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
6713adantr 276 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) ∈ ℝ)
686adantr 276 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴𝑅) ∈ ℂ)
6968abscld 11328 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) ∈ ℝ)
7011, 5, 2subsubd 8360 . . . . . . 7 (𝜑 → (𝑄 − (𝑅𝐴)) = ((𝑄𝑅) + 𝐴))
7116, 27sublt0d 8591 . . . . . . . . 9 (𝜑 → ((𝑄𝑅) < 0 ↔ 𝑄 < 𝑅))
7225, 71mpbird 167 . . . . . . . 8 (𝜑 → (𝑄𝑅) < 0)
7316, 27resubcld 8402 . . . . . . . . 9 (𝜑 → (𝑄𝑅) ∈ ℝ)
74 ltaddnegr 8446 . . . . . . . . 9 (((𝑄𝑅) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7573, 1, 74syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7672, 75mpbid 147 . . . . . . 7 (𝜑 → ((𝑄𝑅) + 𝐴) < 𝐴)
7770, 76eqbrtrd 4052 . . . . . 6 (𝜑 → (𝑄 − (𝑅𝐴)) < 𝐴)
7877adantr 276 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 − (𝑅𝐴)) < 𝐴)
791adantr 276 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℝ)
8022adantr 276 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 + 𝑅) ∈ ℝ)
81 simpr 110 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) / 2))
8279, 79, 80, 81, 81lt2halvesd 9233 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴 + 𝐴) < (𝑄 + 𝑅))
8379, 79, 80ltaddsub2d 8567 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝐴 + 𝐴) < (𝑄 + 𝑅) ↔ 𝐴 < ((𝑄 + 𝑅) − 𝐴)))
8482, 83mpbid 147 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) − 𝐴))
8511adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℂ)
865adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℂ)
872adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℂ)
8885, 86, 87addsubassd 8352 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) − 𝐴) = (𝑄 + (𝑅𝐴)))
8984, 88breqtrd 4056 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < (𝑄 + (𝑅𝐴)))
9016adantr 276 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℝ)
9127adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℝ)
9291, 79resubcld 8402 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑅𝐴) ∈ ℝ)
9379, 90, 92absdifltd 11325 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((abs‘(𝐴𝑄)) < (𝑅𝐴) ↔ ((𝑄 − (𝑅𝐴)) < 𝐴𝐴 < (𝑄 + (𝑅𝐴)))))
9478, 89, 93mpbir2and 946 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (𝑅𝐴))
9523adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
96 avglt2 9225 . . . . . . . . . 10 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9716, 27, 96syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9825, 97mpbid 147 . . . . . . . 8 (𝜑 → ((𝑄 + 𝑅) / 2) < 𝑅)
9998adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) < 𝑅)
10079, 95, 91, 81, 99lttrd 8147 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < 𝑅)
10179, 91, 100ltled 8140 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴𝑅)
10279, 91, 101abssuble0d 11324 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) = (𝑅𝐴))
10394, 102breqtrrd 4058 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (abs‘(𝐴𝑅)))
10467, 69, 103ltapd 8659 . 2 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
105 apdifflemf.ap . . 3 (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
106 reaplt 8609 . . . 4 ((((𝑄 + 𝑅) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
10723, 1, 106syl2anc 411 . . 3 (𝜑 → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
108105, 107mpbid 147 . 2 (𝜑 → (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2)))
10966, 104, 108mpjaodan 799 1 (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wcel 2164   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874   + caddc 7877   · cmul 7879   < clt 8056  cmin 8192   # cap 8602   / cdiv 8693  2c2 9035  cq 9687  +crp 9722  abscabs 11144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  apdiff  15608
  Copyright terms: Public domain W3C validator