Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  apdifflemf GIF version

Theorem apdifflemf 15985
Description: Lemma for apdiff 15987. Being apart from the point halfway between 𝑄 and 𝑅 suffices for 𝐴 to be a different distance from 𝑄 and from 𝑅. (Contributed by Jim Kingdon, 18-May-2024.)
Hypotheses
Ref Expression
apdifflemf.a (𝜑𝐴 ∈ ℝ)
apdifflemf.q (𝜑𝑄 ∈ ℚ)
apdifflemf.r (𝜑𝑅 ∈ ℚ)
apdifflemf.qr (𝜑𝑄 < 𝑅)
apdifflemf.ap (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
Assertion
Ref Expression
apdifflemf (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))

Proof of Theorem apdifflemf
StepHypRef Expression
1 apdifflemf.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
21recnd 8101 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 apdifflemf.r . . . . . . 7 (𝜑𝑅 ∈ ℚ)
4 qcn 9755 . . . . . . 7 (𝑅 ∈ ℚ → 𝑅 ∈ ℂ)
53, 4syl 14 . . . . . 6 (𝜑𝑅 ∈ ℂ)
62, 5subcld 8383 . . . . 5 (𝜑 → (𝐴𝑅) ∈ ℂ)
76adantr 276 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝐴𝑅) ∈ ℂ)
87abscld 11492 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) ∈ ℝ)
9 apdifflemf.q . . . . . . 7 (𝜑𝑄 ∈ ℚ)
10 qcn 9755 . . . . . . 7 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
119, 10syl 14 . . . . . 6 (𝜑𝑄 ∈ ℂ)
122, 11subcld 8383 . . . . 5 (𝜑 → (𝐴𝑄) ∈ ℂ)
1312abscld 11492 . . . 4 (𝜑 → (abs‘(𝐴𝑄)) ∈ ℝ)
1413adantr 276 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) ∈ ℝ)
15 qre 9746 . . . . . . . . . 10 (𝑄 ∈ ℚ → 𝑄 ∈ ℝ)
169, 15syl 14 . . . . . . . . 9 (𝜑𝑄 ∈ ℝ)
1716adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℝ)
181adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℝ)
19 qaddcl 9756 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℚ ∧ 𝑅 ∈ ℚ) → (𝑄 + 𝑅) ∈ ℚ)
209, 3, 19syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 𝑅) ∈ ℚ)
21 qre 9746 . . . . . . . . . . . . 13 ((𝑄 + 𝑅) ∈ ℚ → (𝑄 + 𝑅) ∈ ℝ)
2220, 21syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 𝑅) ∈ ℝ)
2322rehalfcld 9284 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 𝑅) / 2) ∈ ℝ)
2423adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
25 apdifflemf.qr . . . . . . . . . . . 12 (𝜑𝑄 < 𝑅)
26 qre 9746 . . . . . . . . . . . . . 14 (𝑅 ∈ ℚ → 𝑅 ∈ ℝ)
273, 26syl 14 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ ℝ)
28 avglt1 9276 . . . . . . . . . . . . 13 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
2916, 27, 28syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (𝑄 < 𝑅𝑄 < ((𝑄 + 𝑅) / 2)))
3025, 29mpbid 147 . . . . . . . . . . 11 (𝜑𝑄 < ((𝑄 + 𝑅) / 2))
3130adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < ((𝑄 + 𝑅) / 2))
32 simpr 110 . . . . . . . . . 10 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) / 2) < 𝐴)
3317, 24, 18, 31, 32lttrd 8198 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝐴)
3417, 18, 33ltled 8191 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄𝐴)
3517, 18, 34abssubge0d 11487 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) = (𝐴𝑄))
3635oveq2d 5960 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = (𝑅 − (𝐴𝑄)))
375adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℂ)
382adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 ∈ ℂ)
3911adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 ∈ ℂ)
4037, 38, 39subsub3d 8413 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (𝐴𝑄)) = ((𝑅 + 𝑄) − 𝐴))
4137, 39addcomd 8223 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + 𝑄) = (𝑄 + 𝑅))
4241oveq1d 5959 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑅 + 𝑄) − 𝐴) = ((𝑄 + 𝑅) − 𝐴))
4336, 40, 423eqtrd 2242 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) = ((𝑄 + 𝑅) − 𝐴))
4422adantr 276 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) ∈ ℝ)
45 2rp 9780 . . . . . . . . . 10 2 ∈ ℝ+
4645a1i 9 . . . . . . . . 9 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 2 ∈ ℝ+)
4744, 18, 46ltdivmuld 9870 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) / 2) < 𝐴 ↔ (𝑄 + 𝑅) < (2 · 𝐴)))
4832, 47mpbid 147 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (2 · 𝐴))
49382timesd 9280 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (2 · 𝐴) = (𝐴 + 𝐴))
5048, 49breqtrd 4070 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 + 𝑅) < (𝐴 + 𝐴))
5144, 18, 18ltsubaddd 8614 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (((𝑄 + 𝑅) − 𝐴) < 𝐴 ↔ (𝑄 + 𝑅) < (𝐴 + 𝐴)))
5250, 51mpbird 167 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((𝑄 + 𝑅) − 𝐴) < 𝐴)
5343, 52eqbrtrd 4066 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 − (abs‘(𝐴𝑄))) < 𝐴)
5425adantr 276 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑄 < 𝑅)
5527adantr 276 . . . . . . . 8 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝑅 ∈ ℝ)
56 difrp 9814 . . . . . . . 8 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5717, 55, 56syl2anc 411 . . . . . . 7 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑄 < 𝑅 ↔ (𝑅𝑄) ∈ ℝ+))
5854, 57mpbid 147 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅𝑄) ∈ ℝ+)
5918, 58ltaddrpd 9852 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝐴 + (𝑅𝑄)))
6035oveq2d 5960 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝑅 + (𝐴𝑄)))
6137, 38, 39addsub12d 8406 . . . . . 6 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (𝐴𝑄)) = (𝐴 + (𝑅𝑄)))
6260, 61eqtrd 2238 . . . . 5 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (𝑅 + (abs‘(𝐴𝑄))) = (𝐴 + (𝑅𝑄)))
6359, 62breqtrrd 4072 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → 𝐴 < (𝑅 + (abs‘(𝐴𝑄))))
6418, 55, 14absdifltd 11489 . . . 4 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → ((abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)) ↔ ((𝑅 − (abs‘(𝐴𝑄))) < 𝐴𝐴 < (𝑅 + (abs‘(𝐴𝑄))))))
6553, 63, 64mpbir2and 947 . . 3 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑅)) < (abs‘(𝐴𝑄)))
668, 14, 65gtapd 8710 . 2 ((𝜑 ∧ ((𝑄 + 𝑅) / 2) < 𝐴) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
6713adantr 276 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) ∈ ℝ)
686adantr 276 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴𝑅) ∈ ℂ)
6968abscld 11492 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) ∈ ℝ)
7011, 5, 2subsubd 8411 . . . . . . 7 (𝜑 → (𝑄 − (𝑅𝐴)) = ((𝑄𝑅) + 𝐴))
7116, 27sublt0d 8643 . . . . . . . . 9 (𝜑 → ((𝑄𝑅) < 0 ↔ 𝑄 < 𝑅))
7225, 71mpbird 167 . . . . . . . 8 (𝜑 → (𝑄𝑅) < 0)
7316, 27resubcld 8453 . . . . . . . . 9 (𝜑 → (𝑄𝑅) ∈ ℝ)
74 ltaddnegr 8498 . . . . . . . . 9 (((𝑄𝑅) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7573, 1, 74syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑄𝑅) < 0 ↔ ((𝑄𝑅) + 𝐴) < 𝐴))
7672, 75mpbid 147 . . . . . . 7 (𝜑 → ((𝑄𝑅) + 𝐴) < 𝐴)
7770, 76eqbrtrd 4066 . . . . . 6 (𝜑 → (𝑄 − (𝑅𝐴)) < 𝐴)
7877adantr 276 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 − (𝑅𝐴)) < 𝐴)
791adantr 276 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℝ)
8022adantr 276 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑄 + 𝑅) ∈ ℝ)
81 simpr 110 . . . . . . . 8 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) / 2))
8279, 79, 80, 81, 81lt2halvesd 9285 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝐴 + 𝐴) < (𝑄 + 𝑅))
8379, 79, 80ltaddsub2d 8619 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝐴 + 𝐴) < (𝑄 + 𝑅) ↔ 𝐴 < ((𝑄 + 𝑅) − 𝐴)))
8482, 83mpbid 147 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < ((𝑄 + 𝑅) − 𝐴))
8511adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℂ)
865adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℂ)
872adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 ∈ ℂ)
8885, 86, 87addsubassd 8403 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) − 𝐴) = (𝑄 + (𝑅𝐴)))
8984, 88breqtrd 4070 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < (𝑄 + (𝑅𝐴)))
9016adantr 276 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑄 ∈ ℝ)
9127adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝑅 ∈ ℝ)
9291, 79resubcld 8453 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (𝑅𝐴) ∈ ℝ)
9379, 90, 92absdifltd 11489 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((abs‘(𝐴𝑄)) < (𝑅𝐴) ↔ ((𝑄 − (𝑅𝐴)) < 𝐴𝐴 < (𝑄 + (𝑅𝐴)))))
9478, 89, 93mpbir2and 947 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (𝑅𝐴))
9523adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) ∈ ℝ)
96 avglt2 9277 . . . . . . . . . 10 ((𝑄 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9716, 27, 96syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 < 𝑅 ↔ ((𝑄 + 𝑅) / 2) < 𝑅))
9825, 97mpbid 147 . . . . . . . 8 (𝜑 → ((𝑄 + 𝑅) / 2) < 𝑅)
9998adantr 276 . . . . . . 7 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → ((𝑄 + 𝑅) / 2) < 𝑅)
10079, 95, 91, 81, 99lttrd 8198 . . . . . 6 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴 < 𝑅)
10179, 91, 100ltled 8191 . . . . 5 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → 𝐴𝑅)
10279, 91, 101abssuble0d 11488 . . . 4 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑅)) = (𝑅𝐴))
10394, 102breqtrrd 4072 . . 3 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) < (abs‘(𝐴𝑅)))
10467, 69, 103ltapd 8711 . 2 ((𝜑𝐴 < ((𝑄 + 𝑅) / 2)) → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
105 apdifflemf.ap . . 3 (𝜑 → ((𝑄 + 𝑅) / 2) # 𝐴)
106 reaplt 8661 . . . 4 ((((𝑄 + 𝑅) / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
10723, 1, 106syl2anc 411 . . 3 (𝜑 → (((𝑄 + 𝑅) / 2) # 𝐴 ↔ (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2))))
108105, 107mpbid 147 . 2 (𝜑 → (((𝑄 + 𝑅) / 2) < 𝐴𝐴 < ((𝑄 + 𝑅) / 2)))
10966, 104, 108mpjaodan 800 1 (𝜑 → (abs‘(𝐴𝑄)) # (abs‘(𝐴𝑅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925   + caddc 7928   · cmul 7930   < clt 8107  cmin 8243   # cap 8654   / cdiv 8745  2c2 9087  cq 9740  +crp 9775  abscabs 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310
This theorem is referenced by:  apdiff  15987
  Copyright terms: Public domain W3C validator