![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltap | GIF version |
Description: 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
Ref | Expression |
---|---|
ltap | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 941 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
2 | 1 | olcd 686 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵 < 𝐴 ∨ 𝐴 < 𝐵)) |
3 | simp2 940 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) | |
4 | simp1 939 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) | |
5 | reaplt 7963 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 # 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐵))) | |
6 | 3, 4, 5 | syl2anc 403 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵 # 𝐴 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐵))) |
7 | 2, 6 | mpbird 165 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∨ wo 662 ∧ w3a 920 ∈ wcel 1434 class class class wbr 3811 ℝcr 7250 < clt 7423 # cap 7956 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 3999 ax-un 4223 ax-setind 4315 ax-cnex 7337 ax-resscn 7338 ax-1cn 7339 ax-1re 7340 ax-icn 7341 ax-addcl 7342 ax-addrcl 7343 ax-mulcl 7344 ax-mulrcl 7345 ax-addcom 7346 ax-mulcom 7347 ax-addass 7348 ax-mulass 7349 ax-distr 7350 ax-i2m1 7351 ax-0lt1 7352 ax-1rid 7353 ax-0id 7354 ax-rnegex 7355 ax-precex 7356 ax-cnre 7357 ax-pre-ltirr 7358 ax-pre-lttrn 7360 ax-pre-apti 7361 ax-pre-ltadd 7362 ax-pre-mulgt0 7363 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-br 3812 df-opab 3866 df-id 4083 df-xp 4405 df-rel 4406 df-cnv 4407 df-co 4408 df-dm 4409 df-iota 4932 df-fun 4969 df-fv 4975 df-riota 5545 df-ov 5592 df-oprab 5593 df-mpt2 5594 df-pnf 7425 df-mnf 7426 df-ltxr 7428 df-sub 7556 df-neg 7557 df-reap 7950 df-ap 7957 |
This theorem is referenced by: gtapii 8007 ltapi 8009 gtapd 8010 |
Copyright terms: Public domain | W3C validator |