ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicc2 GIF version

Theorem elicc2 9721
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 7811 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 7811 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 elicc1 9707 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
41, 2, 3syl2an 287 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
5 mnfxr 7822 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
71ad2antrr 479 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
8 simpr1 987 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
9 mnflt 9569 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
109ad2antrr 479 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐴)
11 simpr2 988 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴𝐶)
126, 7, 8, 10, 11xrltletrd 9594 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐶)
132ad2antlr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
14 pnfxr 7818 . . . . . . . 8 +∞ ∈ ℝ*
1514a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
16 simpr3 989 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶𝐵)
17 ltpnf 9567 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1817ad2antlr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 < +∞)
198, 13, 15, 16, 18xrlelttrd 9593 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 < +∞)
20 xrrebnd 9602 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
218, 20syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2212, 19, 21mpbir2and 928 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2322, 11, 163jca 1161 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
2423ex 114 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25 rexr 7811 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
26253anim1i 1167 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
2724, 26impbid1 141 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
284, 27bitrd 187 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619  +∞cpnf 7797  -∞cmnf 7798  *cxr 7799   < clt 7800  cle 7801  [,]cicc 9674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-icc 9678
This theorem is referenced by:  elicc2i  9722  iccssre  9738  iccsupr  9749  iccneg  9772  iccshftr  9777  iccshftl  9779  iccdil  9781  icccntr  9783  iccf1o  9787  suplociccreex  12771  suplociccex  12772  ivthinclemlopn  12783  ivthinclemuopn  12785
  Copyright terms: Public domain W3C validator