Proof of Theorem elicc2
Step | Hyp | Ref
| Expression |
1 | | rexr 7944 |
. . 3
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
2 | | rexr 7944 |
. . 3
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
3 | | elicc1 9860 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
4 | 1, 2, 3 | syl2an 287 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
5 | | mnfxr 7955 |
. . . . . . . 8
⊢ -∞
∈ ℝ* |
6 | 5 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈
ℝ*) |
7 | 1 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈
ℝ*) |
8 | | simpr1 993 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈
ℝ*) |
9 | | mnflt 9719 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → -∞
< 𝐴) |
10 | 9 | ad2antrr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐴) |
11 | | simpr2 994 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ≤ 𝐶) |
12 | 6, 7, 8, 10, 11 | xrltletrd 9747 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
13 | 2 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈
ℝ*) |
14 | | pnfxr 7951 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
15 | 14 | a1i 9 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈
ℝ*) |
16 | | simpr3 995 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) |
17 | | ltpnf 9716 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) |
18 | 17 | ad2antlr 481 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
19 | 8, 13, 15, 16, 18 | xrlelttrd 9746 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
20 | | xrrebnd 9755 |
. . . . . . 7
⊢ (𝐶 ∈ ℝ*
→ (𝐶 ∈ ℝ
↔ (-∞ < 𝐶
∧ 𝐶 <
+∞))) |
21 | 8, 20 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
22 | 12, 19, 21 | mpbir2and 934 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
23 | 22, 11, 16 | 3jca 1167 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
24 | 23 | ex 114 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
25 | | rexr 7944 |
. . . 4
⊢ (𝐶 ∈ ℝ → 𝐶 ∈
ℝ*) |
26 | 25 | 3anim1i 1175 |
. . 3
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
27 | 24, 26 | impbid1 141 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*
∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
28 | 4, 27 | bitrd 187 |
1
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |