ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elicc2 GIF version

Theorem elicc2 10095
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 8153 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 8153 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 elicc1 10081 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
41, 2, 3syl2an 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
5 mnfxr 8164 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
71ad2antrr 488 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
8 simpr1 1006 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
9 mnflt 9940 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
109ad2antrr 488 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐴)
11 simpr2 1007 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴𝐶)
126, 7, 8, 10, 11xrltletrd 9968 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐶)
132ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
14 pnfxr 8160 . . . . . . . 8 +∞ ∈ ℝ*
1514a1i 9 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
16 simpr3 1008 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶𝐵)
17 ltpnf 9937 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1817ad2antlr 489 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 < +∞)
198, 13, 15, 16, 18xrlelttrd 9967 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 < +∞)
20 xrrebnd 9976 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
218, 20syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2212, 19, 21mpbir2and 947 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2322, 11, 163jca 1180 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
2423ex 115 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25 rexr 8153 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
26253anim1i 1188 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
2724, 26impbid1 142 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
284, 27bitrd 188 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wcel 2178   class class class wbr 4059  (class class class)co 5967  cr 7959  +∞cpnf 8139  -∞cmnf 8140  *cxr 8141   < clt 8142  cle 8143  [,]cicc 10048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-icc 10052
This theorem is referenced by:  elicc2i  10096  iccssre  10112  iccsupr  10123  iccneg  10146  iccshftr  10151  iccshftl  10153  iccdil  10155  icccntr  10157  iccf1o  10161  suplociccreex  15211  suplociccex  15212  ivthinclemlopn  15223  ivthinclemuopn  15225
  Copyright terms: Public domain W3C validator