| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoexg | GIF version | ||
| Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| mpoexg.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| mpoexg | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . . 3 ⊢ (𝐵 ∈ 𝑆 → 𝐵 ∈ V) | |
| 2 | elex 2788 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ V) | |
| 3 | 2 | ralrimivw 2582 | . . 3 ⊢ (𝐵 ∈ V → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 4 | 1, 3 | syl 14 | . 2 ⊢ (𝐵 ∈ 𝑆 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | mpoexg.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 6 | 5 | mpoexxg 6319 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) → 𝐹 ∈ V) |
| 7 | 4, 6 | sylan2 286 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ∀wral 2486 Vcvv 2776 ∈ cmpo 5969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: mpoexga 6321 xpsval 13299 rmodislmod 14228 psrval 14543 |
| Copyright terms: Public domain | W3C validator |