Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3prm | GIF version |
Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
3prm | ⊢ 3 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3z 9234 | . . 3 ⊢ 3 ∈ ℤ | |
2 | 1lt3 9042 | . . 3 ⊢ 1 < 3 | |
3 | eluz2b1 9553 | . . 3 ⊢ (3 ∈ (ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 1 < 3)) | |
4 | 1, 2, 3 | mpbir2an 937 | . 2 ⊢ 3 ∈ (ℤ≥‘2) |
5 | elfz1eq 9984 | . . . . 5 ⊢ (𝑧 ∈ (2...2) → 𝑧 = 2) | |
6 | 2z 9233 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
7 | iddvds 11759 | . . . . . . . 8 ⊢ (2 ∈ ℤ → 2 ∥ 2) | |
8 | 2nn 9032 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
9 | 1lt2 9040 | . . . . . . . . 9 ⊢ 1 < 2 | |
10 | ndvdsp1 11884 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 2 → ¬ 2 ∥ (2 + 1))) | |
11 | 6, 8, 9, 10 | mp3an 1332 | . . . . . . . 8 ⊢ (2 ∥ 2 → ¬ 2 ∥ (2 + 1)) |
12 | 6, 7, 11 | mp2b 8 | . . . . . . 7 ⊢ ¬ 2 ∥ (2 + 1) |
13 | df-3 8931 | . . . . . . . 8 ⊢ 3 = (2 + 1) | |
14 | 13 | breq2i 3995 | . . . . . . 7 ⊢ (2 ∥ 3 ↔ 2 ∥ (2 + 1)) |
15 | 12, 14 | mtbir 666 | . . . . . 6 ⊢ ¬ 2 ∥ 3 |
16 | breq1 3990 | . . . . . 6 ⊢ (𝑧 = 2 → (𝑧 ∥ 3 ↔ 2 ∥ 3)) | |
17 | 15, 16 | mtbiri 670 | . . . . 5 ⊢ (𝑧 = 2 → ¬ 𝑧 ∥ 3) |
18 | 5, 17 | syl 14 | . . . 4 ⊢ (𝑧 ∈ (2...2) → ¬ 𝑧 ∥ 3) |
19 | 3m1e2 8991 | . . . . 5 ⊢ (3 − 1) = 2 | |
20 | 19 | oveq2i 5862 | . . . 4 ⊢ (2...(3 − 1)) = (2...2) |
21 | 18, 20 | eleq2s 2265 | . . 3 ⊢ (𝑧 ∈ (2...(3 − 1)) → ¬ 𝑧 ∥ 3) |
22 | 21 | rgen 2523 | . 2 ⊢ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3 |
23 | isprm3 12065 | . 2 ⊢ (3 ∈ ℙ ↔ (3 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3)) | |
24 | 4, 22, 23 | mpbir2an 937 | 1 ⊢ 3 ∈ ℙ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1348 ∈ wcel 2141 ∀wral 2448 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 1c1 7768 + caddc 7770 < clt 7947 − cmin 8083 ℕcn 8871 2c2 8922 3c3 8923 ℤcz 9205 ℤ≥cuz 9480 ...cfz 9958 ∥ cdvds 11742 ℙcprime 12054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 ax-caucvg 7887 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-1o 6393 df-2o 6394 df-er 6511 df-en 6717 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-n0 9129 df-z 9206 df-uz 9481 df-q 9572 df-rp 9604 df-fz 9959 df-fl 10219 df-mod 10272 df-seqfrec 10395 df-exp 10469 df-cj 10799 df-re 10800 df-im 10801 df-rsqrt 10955 df-abs 10956 df-dvds 11743 df-prm 12055 |
This theorem is referenced by: 3lcm2e6 12107 2logb9irr 13648 2logb3irr 13650 2logb9irrap 13654 |
Copyright terms: Public domain | W3C validator |