![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3prm | GIF version |
Description: 3 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
3prm | ⊢ 3 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3z 9313 | . . 3 ⊢ 3 ∈ ℤ | |
2 | 1lt3 9121 | . . 3 ⊢ 1 < 3 | |
3 | eluz2b1 9633 | . . 3 ⊢ (3 ∈ (ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 1 < 3)) | |
4 | 1, 2, 3 | mpbir2an 944 | . 2 ⊢ 3 ∈ (ℤ≥‘2) |
5 | elfz1eq 10067 | . . . . 5 ⊢ (𝑧 ∈ (2...2) → 𝑧 = 2) | |
6 | 2z 9312 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
7 | iddvds 11846 | . . . . . . . 8 ⊢ (2 ∈ ℤ → 2 ∥ 2) | |
8 | 2nn 9111 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
9 | 1lt2 9119 | . . . . . . . . 9 ⊢ 1 < 2 | |
10 | ndvdsp1 11972 | . . . . . . . . 9 ⊢ ((2 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 2 → ¬ 2 ∥ (2 + 1))) | |
11 | 6, 8, 9, 10 | mp3an 1348 | . . . . . . . 8 ⊢ (2 ∥ 2 → ¬ 2 ∥ (2 + 1)) |
12 | 6, 7, 11 | mp2b 8 | . . . . . . 7 ⊢ ¬ 2 ∥ (2 + 1) |
13 | df-3 9010 | . . . . . . . 8 ⊢ 3 = (2 + 1) | |
14 | 13 | breq2i 4026 | . . . . . . 7 ⊢ (2 ∥ 3 ↔ 2 ∥ (2 + 1)) |
15 | 12, 14 | mtbir 672 | . . . . . 6 ⊢ ¬ 2 ∥ 3 |
16 | breq1 4021 | . . . . . 6 ⊢ (𝑧 = 2 → (𝑧 ∥ 3 ↔ 2 ∥ 3)) | |
17 | 15, 16 | mtbiri 676 | . . . . 5 ⊢ (𝑧 = 2 → ¬ 𝑧 ∥ 3) |
18 | 5, 17 | syl 14 | . . . 4 ⊢ (𝑧 ∈ (2...2) → ¬ 𝑧 ∥ 3) |
19 | 3m1e2 9070 | . . . . 5 ⊢ (3 − 1) = 2 | |
20 | 19 | oveq2i 5908 | . . . 4 ⊢ (2...(3 − 1)) = (2...2) |
21 | 18, 20 | eleq2s 2284 | . . 3 ⊢ (𝑧 ∈ (2...(3 − 1)) → ¬ 𝑧 ∥ 3) |
22 | 21 | rgen 2543 | . 2 ⊢ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3 |
23 | isprm3 12153 | . 2 ⊢ (3 ∈ ℙ ↔ (3 ∈ (ℤ≥‘2) ∧ ∀𝑧 ∈ (2...(3 − 1)) ¬ 𝑧 ∥ 3)) | |
24 | 4, 22, 23 | mpbir2an 944 | 1 ⊢ 3 ∈ ℙ |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2160 ∀wral 2468 class class class wbr 4018 ‘cfv 5235 (class class class)co 5897 1c1 7843 + caddc 7845 < clt 8023 − cmin 8159 ℕcn 8950 2c2 9001 3c3 9002 ℤcz 9284 ℤ≥cuz 9559 ...cfz 10040 ∥ cdvds 11829 ℙcprime 12142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 ax-caucvg 7962 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-1o 6442 df-2o 6443 df-er 6560 df-en 6768 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-fz 10041 df-fl 10303 df-mod 10356 df-seqfrec 10479 df-exp 10554 df-cj 10886 df-re 10887 df-im 10888 df-rsqrt 11042 df-abs 11043 df-dvds 11830 df-prm 12143 |
This theorem is referenced by: 3lcm2e6 12195 2logb9irr 14866 2logb3irr 14868 2logb9irrap 14872 |
Copyright terms: Public domain | W3C validator |