| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nen2 | GIF version | ||
| Description: One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1nen2 | ⊢ ¬ 1o ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6553 | . . 3 ⊢ 1o ∈ ω | |
| 2 | php5 6894 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
| 4 | df-2o 6450 | . . 3 ⊢ 2o = suc 1o | |
| 5 | 4 | breq2i 4033 | . 2 ⊢ (1o ≈ 2o ↔ 1o ≈ suc 1o) |
| 6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 1o ≈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2160 class class class wbr 4025 suc csuc 4390 ωcom 4614 1oc1o 6442 2oc2o 6443 ≈ cen 6772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-nul 4151 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-iinf 4612 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3150 df-un 3152 df-in 3154 df-ss 3161 df-nul 3442 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-tr 4124 df-id 4318 df-iord 4391 df-on 4393 df-suc 4396 df-iom 4615 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-rn 4662 df-res 4663 df-ima 4664 df-iota 5203 df-fun 5244 df-fn 5245 df-f 5246 df-f1 5247 df-fo 5248 df-f1o 5249 df-fv 5250 df-1o 6449 df-2o 6450 df-er 6567 df-en 6775 |
| This theorem is referenced by: pm54.43 7229 pr2ne 7231 1nprm 12163 |
| Copyright terms: Public domain | W3C validator |