![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nen2 | GIF version |
Description: One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.) |
Ref | Expression |
---|---|
1nen2 | ⊢ ¬ 1o ≈ 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6573 | . . 3 ⊢ 1o ∈ ω | |
2 | php5 6914 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
4 | df-2o 6470 | . . 3 ⊢ 2o = suc 1o | |
5 | 4 | breq2i 4037 | . 2 ⊢ (1o ≈ 2o ↔ 1o ≈ suc 1o) |
6 | 3, 5 | mtbir 672 | 1 ⊢ ¬ 1o ≈ 2o |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2164 class class class wbr 4029 suc csuc 4396 ωcom 4622 1oc1o 6462 2oc2o 6463 ≈ cen 6792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1o 6469 df-2o 6470 df-er 6587 df-en 6795 |
This theorem is referenced by: pm54.43 7250 pr2ne 7252 1nprm 12252 |
Copyright terms: Public domain | W3C validator |