| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nen2 | GIF version | ||
| Description: One and two are not equinumerous. (Contributed by Jim Kingdon, 25-Jan-2022.) |
| Ref | Expression |
|---|---|
| 1nen2 | ⊢ ¬ 1o ≈ 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6624 | . . 3 ⊢ 1o ∈ ω | |
| 2 | php5 6975 | . . 3 ⊢ (1o ∈ ω → ¬ 1o ≈ suc 1o) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ¬ 1o ≈ suc 1o |
| 4 | df-2o 6521 | . . 3 ⊢ 2o = suc 1o | |
| 5 | 4 | breq2i 4062 | . 2 ⊢ (1o ≈ 2o ↔ 1o ≈ suc 1o) |
| 6 | 3, 5 | mtbir 673 | 1 ⊢ ¬ 1o ≈ 2o |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2177 class class class wbr 4054 suc csuc 4425 ωcom 4651 1oc1o 6513 2oc2o 6514 ≈ cen 6843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1o 6520 df-2o 6521 df-er 6638 df-en 6846 |
| This theorem is referenced by: pm54.43 7319 pr2ne 7321 1nprm 12521 umgredgnlp 15826 |
| Copyright terms: Public domain | W3C validator |