Proof of Theorem cvgcmp2nlemabs
Step | Hyp | Ref
| Expression |
1 | | eqidd 2166 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) = (𝐺‘𝑘)) |
2 | | cvgcmp2nlemabs.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | cvgcmp2nlemabs.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
4 | | eluznn 9538 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℕ) |
5 | 2, 3, 4 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
6 | | elnnuz 9502 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
7 | 5, 6 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
8 | | elnnuz 9502 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
9 | | cvgcmp2n.cl |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
10 | 9 | recnd 7927 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
11 | 8, 10 | sylan2br 286 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) ∈
ℂ) |
12 | 1, 7, 11 | fsum3ser 11338 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑁)) |
13 | | nnuz 9501 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
14 | 2, 13 | eleqtrdi 2259 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
15 | 1, 14, 11 | fsum3ser 11338 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑀)) |
16 | 12, 15 | oveq12d 5860 |
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
17 | 2 | nnred 8870 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
18 | 17 | ltp1d 8825 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
19 | | fzdisj 9987 |
. . . . . . . . . 10
⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
20 | 18, 19 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
21 | | eluzle 9478 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
23 | | elfz1b 10025 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) |
24 | 2, 5, 22, 23 | syl3anbrc 1171 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
25 | | fzsplit 9986 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
26 | 24, 25 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
27 | | 1zzd 9218 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
28 | 5 | nnzd 9312 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
29 | 27, 28 | fzfigd 10366 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
30 | | elfznn 9989 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
31 | 30, 10 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
32 | 20, 26, 29, 31 | fsumsplit 11348 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘))) |
33 | 32 | eqcomd 2171 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘)) |
34 | 29, 31 | fsumcl 11341 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) ∈ ℂ) |
35 | 2 | nnzd 9312 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
36 | 27, 35 | fzfigd 10366 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
37 | | elfznn 9989 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) |
38 | 37, 10 | sylan2 284 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
39 | 36, 38 | fsumcl 11341 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) ∈ ℂ) |
40 | 35 | peano2zd 9316 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
41 | 40, 28 | fzfigd 10366 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
42 | 2 | peano2nnd 8872 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
43 | | elfzuz 9956 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
44 | | eluznn 9538 |
. . . . . . . . . . 11
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ ℕ) |
45 | 42, 43, 44 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
46 | 45, 10 | syldan 280 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
47 | 41, 46 | fsumcl 11341 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℂ) |
48 | 34, 39, 47 | subaddd 8227 |
. . . . . . 7
⊢ (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘))) |
49 | 33, 48 | mpbird 166 |
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
50 | 16, 49 | eqtr3d 2200 |
. . . . 5
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
51 | 45, 9 | syldan 280 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
52 | 41, 51 | fsumrecl 11342 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℝ) |
53 | 50, 52 | eqeltrd 2243 |
. . . 4
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ) |
54 | 42 | nnzd 9312 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
55 | 54, 28 | fzfigd 10366 |
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
56 | | cvgcmp2n.ge0 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
57 | 45, 56 | syldan 280 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺‘𝑘)) |
58 | 55, 51, 57 | fsumge0 11400 |
. . . . 5
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
59 | 58, 50 | breqtrrd 4010 |
. . . 4
⊢ (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
60 | 53, 59 | absidd 11109 |
. . 3
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
61 | 60, 50 | eqtrd 2198 |
. 2
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
62 | | halfre 9070 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
63 | 62 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
64 | 42 | nnnn0d 9167 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
65 | 63, 64 | reexpcld 10605 |
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈
ℝ) |
66 | 5 | peano2nnd 8872 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
67 | 66 | nnnn0d 9167 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
68 | 63, 67 | reexpcld 10605 |
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) |
69 | 65, 68 | resubcld 8279 |
. . . 4
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) |
70 | | 1mhlfehlf 9075 |
. . . . . 6
⊢ (1
− (1 / 2)) = (1 / 2) |
71 | | 2rp 9594 |
. . . . . . 7
⊢ 2 ∈
ℝ+ |
72 | | rpreccl 9616 |
. . . . . . 7
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
73 | 71, 72 | ax-mp 5 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ+ |
74 | 70, 73 | eqeltri 2239 |
. . . . 5
⊢ (1
− (1 / 2)) ∈ ℝ+ |
75 | 74 | a1i 9 |
. . . 4
⊢ (𝜑 → (1 − (1 / 2)) ∈
ℝ+) |
76 | 69, 75 | rerpdivcld 9664 |
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) ∈ ℝ) |
77 | 71 | a1i 9 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ+) |
78 | 2 | nnrpd 9630 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
79 | 77, 78 | rpdivcld 9650 |
. . . 4
⊢ (𝜑 → (2 / 𝑀) ∈
ℝ+) |
80 | 79 | rpred 9632 |
. . 3
⊢ (𝜑 → (2 / 𝑀) ∈ ℝ) |
81 | 71 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈
ℝ+) |
82 | 45 | nnzd 9312 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ) |
83 | 81, 82 | rpexpcld 10612 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈
ℝ+) |
84 | 83 | rprecred 9644 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ) |
85 | | cvgcmp2n.lt |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
86 | 45, 85 | syldan 280 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
87 | 41, 51, 84, 86 | fsumle 11404 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘))) |
88 | | 2cnd 8930 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ) |
89 | 81 | rpap0d 9638 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0) |
90 | 88, 89, 82 | exprecapd 10596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
91 | 90 | eqcomd 2171 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘)) |
92 | 91 | sumeq2dv 11309 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) |
93 | 87, 92 | breqtrd 4008 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) |
94 | | fzval3 10139 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) |
95 | 28, 94 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) |
96 | 95 | sumeq1d 11307 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) |
97 | 93, 96 | breqtrd 4008 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) |
98 | | halfcn 9071 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
99 | 98 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
100 | | 1re 7898 |
. . . . . . 7
⊢ 1 ∈
ℝ |
101 | | halflt1 9074 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
102 | 62, 100, 101 | ltapii 8533 |
. . . . . 6
⊢ (1 / 2) #
1 |
103 | 102 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 / 2) #
1) |
104 | | eluzp1p1 9491 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
105 | 3, 104 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
106 | 99, 103, 64, 105 | geosergap 11447 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) |
107 | 97, 106 | breqtrd 4008 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) |
108 | 73 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℝ+) |
109 | 28 | peano2zd 9316 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
110 | 108, 109 | rpexpcld 10612 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ+) |
111 | 110 | rpred 9632 |
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) |
112 | 65, 111 | resubcld 8279 |
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) |
113 | 2 | nnrecred 8904 |
. . . . 5
⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
114 | 65, 110 | ltsubrpd 9665 |
. . . . . 6
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < ((1
/ 2)↑(𝑀 +
1))) |
115 | | 2cnd 8930 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) |
116 | 77 | rpap0d 9638 |
. . . . . . . 8
⊢ (𝜑 → 2 # 0) |
117 | 115, 116,
40 | exprecapd 10596 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1)))) |
118 | 42 | nnred 8870 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
119 | 77, 40 | rpexpcld 10612 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈
ℝ+) |
120 | 119 | rpred 9632 |
. . . . . . . . 9
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ) |
121 | | 2z 9219 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
122 | | uzid 9480 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) |
124 | 123 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
(ℤ≥‘2)) |
125 | | bernneq3 10577 |
. . . . . . . . . 10
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝑀 + 1) ∈ ℕ0) →
(𝑀 + 1) < (2↑(𝑀 + 1))) |
126 | 124, 64, 125 | syl2anc 409 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1))) |
127 | 17, 118, 120, 18, 126 | lttrd 8024 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 < (2↑(𝑀 + 1))) |
128 | 78, 119 | ltrecd 9651 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))) |
129 | 127, 128 | mpbid 146 |
. . . . . . 7
⊢ (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)) |
130 | 117, 129 | eqbrtrd 4004 |
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀)) |
131 | 112, 65, 113, 114, 130 | lttrd 8024 |
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < (1 /
𝑀)) |
132 | 112, 113,
77, 131 | ltmul1dd 9688 |
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) < ((1 / 𝑀) ·
2)) |
133 | 70 | oveq2i 5853 |
. . . . . 6
⊢ ((((1 /
2)↑(𝑀 + 1)) −
((1 / 2)↑(𝑁 + 1))) /
(1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 /
2)) |
134 | 112 | recnd 7927 |
. . . . . . 7
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℂ) |
135 | | 1cnd 7915 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
136 | | 1ap0 8488 |
. . . . . . . 8
⊢ 1 #
0 |
137 | 136 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 1 # 0) |
138 | 134, 135,
115, 137, 116 | divdivap2d 8719 |
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1 /
2)) = (((((1 / 2)↑(𝑀 +
1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1)) |
139 | 133, 138 | syl5eq 2211 |
. . . . 5
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) /
1)) |
140 | 134, 115 | mulcld 7919 |
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) ∈ ℂ) |
141 | 140 | div1d 8676 |
. . . . 5
⊢ (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) |
142 | 139, 141 | eqtrd 2198 |
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) |
143 | 17 | recnd 7927 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℂ) |
144 | 2 | nnap0d 8903 |
. . . . 5
⊢ (𝜑 → 𝑀 # 0) |
145 | 115, 143,
144 | divrecap2d 8690 |
. . . 4
⊢ (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2)) |
146 | 132, 142,
145 | 3brtr4d 4014 |
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) < (2 / 𝑀)) |
147 | 52, 76, 80, 107, 146 | lelttrd 8023 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) < (2 / 𝑀)) |
148 | 61, 147 | eqbrtrd 4004 |
1
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) |