Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs GIF version

Theorem cvgcmp2nlemabs 13911
Description: Lemma for cvgcmp2n 13912. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
cvgcmp2n.ge0 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
cvgcmp2n.lt ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
cvgcmp2nlemabs.m (𝜑𝑀 ∈ ℕ)
cvgcmp2nlemabs.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgcmp2nlemabs (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2166 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) = (𝐺𝑘))
2 cvgcmp2nlemabs.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
3 cvgcmp2nlemabs.n . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluznn 9538 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
52, 3, 4syl2anc 409 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6 elnnuz 9502 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6sylib 121 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
8 elnnuz 9502 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
9 cvgcmp2n.cl . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
109recnd 7927 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
118, 10sylan2br 286 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) ∈ ℂ)
121, 7, 11fsum3ser 11338 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑁))
13 nnuz 9501 . . . . . . . . 9 ℕ = (ℤ‘1)
142, 13eleqtrdi 2259 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
151, 14, 11fsum3ser 11338 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑀))
1612, 15oveq12d 5860 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
172nnred 8870 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1817ltp1d 8825 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
19 fzdisj 9987 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2018, 19syl 14 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
21 eluzle 9478 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
223, 21syl 14 . . . . . . . . . . 11 (𝜑𝑀𝑁)
23 elfz1b 10025 . . . . . . . . . . 11 (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
242, 5, 22, 23syl3anbrc 1171 . . . . . . . . . 10 (𝜑𝑀 ∈ (1...𝑁))
25 fzsplit 9986 . . . . . . . . . 10 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2624, 25syl 14 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
27 1zzd 9218 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
285nnzd 9312 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2927, 28fzfigd 10366 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
30 elfznn 9989 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
3130, 10sylan2 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐺𝑘) ∈ ℂ)
3220, 26, 29, 31fsumsplit 11348 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)))
3332eqcomd 2171 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘))
3429, 31fsumcl 11341 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) ∈ ℂ)
352nnzd 9312 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
3627, 35fzfigd 10366 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
37 elfznn 9989 . . . . . . . . . 10 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
3837, 10sylan2 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
3936, 38fsumcl 11341 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) ∈ ℂ)
4035peano2zd 9316 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
4140, 28fzfigd 10366 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
422peano2nnd 8872 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ)
43 elfzuz 9956 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
44 eluznn 9538 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
4542, 43, 44syl2an 287 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
4645, 10syldan 280 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℂ)
4741, 46fsumcl 11341 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℂ)
4834, 39, 47subaddd 8227 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘)))
4933, 48mpbird 166 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5016, 49eqtr3d 2200 . . . . 5 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5145, 9syldan 280 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℝ)
5241, 51fsumrecl 11342 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℝ)
5350, 52eqeltrd 2243 . . . 4 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ)
5442nnzd 9312 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
5554, 28fzfigd 10366 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
56 cvgcmp2n.ge0 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
5745, 56syldan 280 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺𝑘))
5855, 51, 57fsumge0 11400 . . . . 5 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5958, 50breqtrrd 4010 . . . 4 (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6053, 59absidd 11109 . . 3 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6160, 50eqtrd 2198 . 2 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
62 halfre 9070 . . . . . . 7 (1 / 2) ∈ ℝ
6362a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ)
6442nnnn0d 9167 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6563, 64reexpcld 10605 . . . . 5 (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈ ℝ)
665peano2nnd 8872 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 9167 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6863, 67reexpcld 10605 . . . . 5 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
6965, 68resubcld 8279 . . . 4 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
70 1mhlfehlf 9075 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
71 2rp 9594 . . . . . . 7 2 ∈ ℝ+
72 rpreccl 9616 . . . . . . 7 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 5 . . . . . 6 (1 / 2) ∈ ℝ+
7470, 73eqeltri 2239 . . . . 5 (1 − (1 / 2)) ∈ ℝ+
7574a1i 9 . . . 4 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7669, 75rerpdivcld 9664 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) ∈ ℝ)
7771a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
782nnrpd 9630 . . . . 5 (𝜑𝑀 ∈ ℝ+)
7977, 78rpdivcld 9650 . . . 4 (𝜑 → (2 / 𝑀) ∈ ℝ+)
8079rpred 9632 . . 3 (𝜑 → (2 / 𝑀) ∈ ℝ)
8171a1i 9 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℝ+)
8245nnzd 9312 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ)
8381, 82rpexpcld 10612 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈ ℝ+)
8483rprecred 9644 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ)
85 cvgcmp2n.lt . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8645, 85syldan 280 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8741, 51, 84, 86fsumle 11404 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)))
88 2cnd 8930 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ)
8981rpap0d 9638 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0)
9088, 89, 82exprecapd 10596 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
9190eqcomd 2171 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘))
9291sumeq2dv 11309 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
9387, 92breqtrd 4008 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
94 fzval3 10139 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9528, 94syl 14 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9695sumeq1d 11307 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
9793, 96breqtrd 4008 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
98 halfcn 9071 . . . . . 6 (1 / 2) ∈ ℂ
9998a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
100 1re 7898 . . . . . . 7 1 ∈ ℝ
101 halflt1 9074 . . . . . . 7 (1 / 2) < 1
10262, 100, 101ltapii 8533 . . . . . 6 (1 / 2) # 1
103102a1i 9 . . . . 5 (𝜑 → (1 / 2) # 1)
104 eluzp1p1 9491 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
1053, 104syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
10699, 103, 64, 105geosergap 11447 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10797, 106breqtrd 4008 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10873a1i 9 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ+)
10928peano2zd 9316 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
110108, 109rpexpcld 10612 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ+)
111110rpred 9632 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
11265, 111resubcld 8279 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
1132nnrecred 8904 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
11465, 110ltsubrpd 9665 . . . . . 6 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < ((1 / 2)↑(𝑀 + 1)))
115 2cnd 8930 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
11677rpap0d 9638 . . . . . . . 8 (𝜑 → 2 # 0)
117115, 116, 40exprecapd 10596 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1))))
11842nnred 8870 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℝ)
11977, 40rpexpcld 10612 . . . . . . . . . 10 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ+)
120119rpred 9632 . . . . . . . . 9 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ)
121 2z 9219 . . . . . . . . . . . 12 2 ∈ ℤ
122 uzid 9480 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
123121, 122ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
124123a1i 9 . . . . . . . . . 10 (𝜑 → 2 ∈ (ℤ‘2))
125 bernneq3 10577 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ (𝑀 + 1) ∈ ℕ0) → (𝑀 + 1) < (2↑(𝑀 + 1)))
126124, 64, 125syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1)))
12717, 118, 120, 18, 126lttrd 8024 . . . . . . . 8 (𝜑𝑀 < (2↑(𝑀 + 1)))
12878, 119ltrecd 9651 . . . . . . . 8 (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)))
129127, 128mpbid 146 . . . . . . 7 (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))
130117, 129eqbrtrd 4004 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀))
131112, 65, 113, 114, 130lttrd 8024 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < (1 / 𝑀))
132112, 113, 77, 131ltmul1dd 9688 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) < ((1 / 𝑀) · 2))
13370oveq2i 5853 . . . . . 6 ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2))
134112recnd 7927 . . . . . . 7 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℂ)
135 1cnd 7915 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
136 1ap0 8488 . . . . . . . 8 1 # 0
137136a1i 9 . . . . . . 7 (𝜑 → 1 # 0)
138134, 135, 115, 137, 116divdivap2d 8719 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2)) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
139133, 138syl5eq 2211 . . . . 5 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
140134, 115mulcld 7919 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) ∈ ℂ)
141140div1d 8676 . . . . 5 (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
142139, 141eqtrd 2198 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
14317recnd 7927 . . . . 5 (𝜑𝑀 ∈ ℂ)
1442nnap0d 8903 . . . . 5 (𝜑𝑀 # 0)
145115, 143, 144divrecap2d 8690 . . . 4 (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2))
146132, 142, 1453brtr4d 4014 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) < (2 / 𝑀))
14752, 76, 80, 107, 146lelttrd 8023 . 2 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) < (2 / 𝑀))
14861, 147eqbrtrd 4004 1 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cun 3114  cin 3115  c0 3409   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  +crp 9589  ...cfz 9944  ..^cfzo 10077  seqcseq 10380  cexp 10454  abscabs 10939  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  cvgcmp2n  13912
  Copyright terms: Public domain W3C validator