Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs GIF version

Theorem cvgcmp2nlemabs 14064
Description: Lemma for cvgcmp2n 14065. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
cvgcmp2n.ge0 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
cvgcmp2n.lt ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
cvgcmp2nlemabs.m (𝜑𝑀 ∈ ℕ)
cvgcmp2nlemabs.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgcmp2nlemabs (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2171 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) = (𝐺𝑘))
2 cvgcmp2nlemabs.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
3 cvgcmp2nlemabs.n . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluznn 9559 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
52, 3, 4syl2anc 409 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6 elnnuz 9523 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6sylib 121 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
8 elnnuz 9523 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
9 cvgcmp2n.cl . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
109recnd 7948 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
118, 10sylan2br 286 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) ∈ ℂ)
121, 7, 11fsum3ser 11360 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑁))
13 nnuz 9522 . . . . . . . . 9 ℕ = (ℤ‘1)
142, 13eleqtrdi 2263 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
151, 14, 11fsum3ser 11360 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑀))
1612, 15oveq12d 5871 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
172nnred 8891 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1817ltp1d 8846 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
19 fzdisj 10008 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2018, 19syl 14 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
21 eluzle 9499 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
223, 21syl 14 . . . . . . . . . . 11 (𝜑𝑀𝑁)
23 elfz1b 10046 . . . . . . . . . . 11 (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
242, 5, 22, 23syl3anbrc 1176 . . . . . . . . . 10 (𝜑𝑀 ∈ (1...𝑁))
25 fzsplit 10007 . . . . . . . . . 10 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2624, 25syl 14 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
27 1zzd 9239 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
285nnzd 9333 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2927, 28fzfigd 10387 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
30 elfznn 10010 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
3130, 10sylan2 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐺𝑘) ∈ ℂ)
3220, 26, 29, 31fsumsplit 11370 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)))
3332eqcomd 2176 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘))
3429, 31fsumcl 11363 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) ∈ ℂ)
352nnzd 9333 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
3627, 35fzfigd 10387 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
37 elfznn 10010 . . . . . . . . . 10 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
3837, 10sylan2 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
3936, 38fsumcl 11363 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) ∈ ℂ)
4035peano2zd 9337 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
4140, 28fzfigd 10387 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
422peano2nnd 8893 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ)
43 elfzuz 9977 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
44 eluznn 9559 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
4542, 43, 44syl2an 287 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
4645, 10syldan 280 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℂ)
4741, 46fsumcl 11363 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℂ)
4834, 39, 47subaddd 8248 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘)))
4933, 48mpbird 166 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5016, 49eqtr3d 2205 . . . . 5 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5145, 9syldan 280 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℝ)
5241, 51fsumrecl 11364 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℝ)
5350, 52eqeltrd 2247 . . . 4 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ)
5442nnzd 9333 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
5554, 28fzfigd 10387 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
56 cvgcmp2n.ge0 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
5745, 56syldan 280 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺𝑘))
5855, 51, 57fsumge0 11422 . . . . 5 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5958, 50breqtrrd 4017 . . . 4 (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6053, 59absidd 11131 . . 3 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6160, 50eqtrd 2203 . 2 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
62 halfre 9091 . . . . . . 7 (1 / 2) ∈ ℝ
6362a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ)
6442nnnn0d 9188 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6563, 64reexpcld 10626 . . . . 5 (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈ ℝ)
665peano2nnd 8893 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 9188 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6863, 67reexpcld 10626 . . . . 5 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
6965, 68resubcld 8300 . . . 4 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
70 1mhlfehlf 9096 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
71 2rp 9615 . . . . . . 7 2 ∈ ℝ+
72 rpreccl 9637 . . . . . . 7 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 5 . . . . . 6 (1 / 2) ∈ ℝ+
7470, 73eqeltri 2243 . . . . 5 (1 − (1 / 2)) ∈ ℝ+
7574a1i 9 . . . 4 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7669, 75rerpdivcld 9685 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) ∈ ℝ)
7771a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
782nnrpd 9651 . . . . 5 (𝜑𝑀 ∈ ℝ+)
7977, 78rpdivcld 9671 . . . 4 (𝜑 → (2 / 𝑀) ∈ ℝ+)
8079rpred 9653 . . 3 (𝜑 → (2 / 𝑀) ∈ ℝ)
8171a1i 9 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℝ+)
8245nnzd 9333 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ)
8381, 82rpexpcld 10633 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈ ℝ+)
8483rprecred 9665 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ)
85 cvgcmp2n.lt . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8645, 85syldan 280 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8741, 51, 84, 86fsumle 11426 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)))
88 2cnd 8951 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ)
8981rpap0d 9659 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0)
9088, 89, 82exprecapd 10617 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
9190eqcomd 2176 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘))
9291sumeq2dv 11331 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
9387, 92breqtrd 4015 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
94 fzval3 10160 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9528, 94syl 14 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9695sumeq1d 11329 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
9793, 96breqtrd 4015 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
98 halfcn 9092 . . . . . 6 (1 / 2) ∈ ℂ
9998a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
100 1re 7919 . . . . . . 7 1 ∈ ℝ
101 halflt1 9095 . . . . . . 7 (1 / 2) < 1
10262, 100, 101ltapii 8554 . . . . . 6 (1 / 2) # 1
103102a1i 9 . . . . 5 (𝜑 → (1 / 2) # 1)
104 eluzp1p1 9512 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
1053, 104syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
10699, 103, 64, 105geosergap 11469 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10797, 106breqtrd 4015 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10873a1i 9 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ+)
10928peano2zd 9337 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
110108, 109rpexpcld 10633 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ+)
111110rpred 9653 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
11265, 111resubcld 8300 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
1132nnrecred 8925 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
11465, 110ltsubrpd 9686 . . . . . 6 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < ((1 / 2)↑(𝑀 + 1)))
115 2cnd 8951 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
11677rpap0d 9659 . . . . . . . 8 (𝜑 → 2 # 0)
117115, 116, 40exprecapd 10617 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1))))
11842nnred 8891 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℝ)
11977, 40rpexpcld 10633 . . . . . . . . . 10 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ+)
120119rpred 9653 . . . . . . . . 9 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ)
121 2z 9240 . . . . . . . . . . . 12 2 ∈ ℤ
122 uzid 9501 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
123121, 122ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
124123a1i 9 . . . . . . . . . 10 (𝜑 → 2 ∈ (ℤ‘2))
125 bernneq3 10598 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ (𝑀 + 1) ∈ ℕ0) → (𝑀 + 1) < (2↑(𝑀 + 1)))
126124, 64, 125syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1)))
12717, 118, 120, 18, 126lttrd 8045 . . . . . . . 8 (𝜑𝑀 < (2↑(𝑀 + 1)))
12878, 119ltrecd 9672 . . . . . . . 8 (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)))
129127, 128mpbid 146 . . . . . . 7 (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))
130117, 129eqbrtrd 4011 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀))
131112, 65, 113, 114, 130lttrd 8045 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < (1 / 𝑀))
132112, 113, 77, 131ltmul1dd 9709 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) < ((1 / 𝑀) · 2))
13370oveq2i 5864 . . . . . 6 ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2))
134112recnd 7948 . . . . . . 7 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℂ)
135 1cnd 7936 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
136 1ap0 8509 . . . . . . . 8 1 # 0
137136a1i 9 . . . . . . 7 (𝜑 → 1 # 0)
138134, 135, 115, 137, 116divdivap2d 8740 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2)) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
139133, 138eqtrid 2215 . . . . 5 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
140134, 115mulcld 7940 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) ∈ ℂ)
141140div1d 8697 . . . . 5 (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
142139, 141eqtrd 2203 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
14317recnd 7948 . . . . 5 (𝜑𝑀 ∈ ℂ)
1442nnap0d 8924 . . . . 5 (𝜑𝑀 # 0)
145115, 143, 144divrecap2d 8711 . . . 4 (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2))
146132, 142, 1453brtr4d 4021 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) < (2 / 𝑀))
14752, 76, 80, 107, 146lelttrd 8044 . 2 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) < (2 / 𝑀))
14861, 147eqbrtrd 4011 1 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cun 3119  cin 3120  c0 3414   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  0cn0 9135  cz 9212  cuz 9487  +crp 9610  ...cfz 9965  ..^cfzo 10098  seqcseq 10401  cexp 10475  abscabs 10961  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  cvgcmp2n  14065
  Copyright terms: Public domain W3C validator