Proof of Theorem cvgcmp2nlemabs
| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqidd 2197 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) = (𝐺‘𝑘)) | 
| 2 |   | cvgcmp2nlemabs.m | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 3 |   | cvgcmp2nlemabs.n | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 4 |   | eluznn 9674 | 
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℕ) | 
| 5 | 2, 3, 4 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 6 |   | elnnuz 9638 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) | 
| 7 | 5, 6 | sylib 122 | 
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) | 
| 8 |   | elnnuz 9638 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) | 
| 9 |   | cvgcmp2n.cl | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) | 
| 10 | 9 | recnd 8055 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) | 
| 11 | 8, 10 | sylan2br 288 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) ∈
ℂ) | 
| 12 | 1, 7, 11 | fsum3ser 11562 | 
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑁)) | 
| 13 |   | nnuz 9637 | 
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) | 
| 14 | 2, 13 | eleqtrdi 2289 | 
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) | 
| 15 | 1, 14, 11 | fsum3ser 11562 | 
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑀)) | 
| 16 | 12, 15 | oveq12d 5940 | 
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) | 
| 17 | 2 | nnred 9003 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 18 | 17 | ltp1d 8957 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) | 
| 19 |   | fzdisj 10127 | 
. . . . . . . . . 10
⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | 
| 20 | 18, 19 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) | 
| 21 |   | eluzle 9613 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | 
| 22 | 3, 21 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≤ 𝑁) | 
| 23 |   | elfz1b 10165 | 
. . . . . . . . . . 11
⊢ (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) | 
| 24 | 2, 5, 22, 23 | syl3anbrc 1183 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) | 
| 25 |   | fzsplit 10126 | 
. . . . . . . . . 10
⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | 
| 26 | 24, 25 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) | 
| 27 |   | 1zzd 9353 | 
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) | 
| 28 | 5 | nnzd 9447 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 29 | 27, 28 | fzfigd 10523 | 
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) ∈ Fin) | 
| 30 |   | elfznn 10129 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | 
| 31 | 30, 10 | sylan2 286 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐺‘𝑘) ∈ ℂ) | 
| 32 | 20, 26, 29, 31 | fsumsplit 11572 | 
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘))) | 
| 33 | 32 | eqcomd 2202 | 
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘)) | 
| 34 | 29, 31 | fsumcl 11565 | 
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) ∈ ℂ) | 
| 35 | 2 | nnzd 9447 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 36 | 27, 35 | fzfigd 10523 | 
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) | 
| 37 |   | elfznn 10129 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) | 
| 38 | 37, 10 | sylan2 286 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐺‘𝑘) ∈ ℂ) | 
| 39 | 36, 38 | fsumcl 11565 | 
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) ∈ ℂ) | 
| 40 | 35 | peano2zd 9451 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) | 
| 41 | 40, 28 | fzfigd 10523 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) | 
| 42 | 2 | peano2nnd 9005 | 
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) | 
| 43 |   | elfzuz 10096 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) | 
| 44 |   | eluznn 9674 | 
. . . . . . . . . . 11
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ ℕ) | 
| 45 | 42, 43, 44 | syl2an 289 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) | 
| 46 | 45, 10 | syldan 282 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℂ) | 
| 47 | 41, 46 | fsumcl 11565 | 
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℂ) | 
| 48 | 34, 39, 47 | subaddd 8355 | 
. . . . . . 7
⊢ (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘))) | 
| 49 | 33, 48 | mpbird 167 | 
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) | 
| 50 | 16, 49 | eqtr3d 2231 | 
. . . . 5
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) | 
| 51 | 45, 9 | syldan 282 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℝ) | 
| 52 | 41, 51 | fsumrecl 11566 | 
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℝ) | 
| 53 | 50, 52 | eqeltrd 2273 | 
. . . 4
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ) | 
| 54 | 42 | nnzd 9447 | 
. . . . . . 7
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) | 
| 55 | 54, 28 | fzfigd 10523 | 
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) | 
| 56 |   | cvgcmp2n.ge0 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) | 
| 57 | 45, 56 | syldan 282 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺‘𝑘)) | 
| 58 | 55, 51, 57 | fsumge0 11624 | 
. . . . 5
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) | 
| 59 | 58, 50 | breqtrrd 4061 | 
. . . 4
⊢ (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) | 
| 60 | 53, 59 | absidd 11332 | 
. . 3
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) | 
| 61 | 60, 50 | eqtrd 2229 | 
. 2
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) | 
| 62 |   | halfre 9204 | 
. . . . . . 7
⊢ (1 / 2)
∈ ℝ | 
| 63 | 62 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → (1 / 2) ∈
ℝ) | 
| 64 | 42 | nnnn0d 9302 | 
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) | 
| 65 | 63, 64 | reexpcld 10782 | 
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈
ℝ) | 
| 66 | 5 | peano2nnd 9005 | 
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) | 
| 67 | 66 | nnnn0d 9302 | 
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) | 
| 68 | 63, 67 | reexpcld 10782 | 
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) | 
| 69 | 65, 68 | resubcld 8407 | 
. . . 4
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) | 
| 70 |   | 1mhlfehlf 9209 | 
. . . . . 6
⊢ (1
− (1 / 2)) = (1 / 2) | 
| 71 |   | 2rp 9733 | 
. . . . . . 7
⊢ 2 ∈
ℝ+ | 
| 72 |   | rpreccl 9755 | 
. . . . . . 7
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) | 
| 73 | 71, 72 | ax-mp 5 | 
. . . . . 6
⊢ (1 / 2)
∈ ℝ+ | 
| 74 | 70, 73 | eqeltri 2269 | 
. . . . 5
⊢ (1
− (1 / 2)) ∈ ℝ+ | 
| 75 | 74 | a1i 9 | 
. . . 4
⊢ (𝜑 → (1 − (1 / 2)) ∈
ℝ+) | 
| 76 | 69, 75 | rerpdivcld 9803 | 
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) ∈ ℝ) | 
| 77 | 71 | a1i 9 | 
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ+) | 
| 78 | 2 | nnrpd 9769 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈
ℝ+) | 
| 79 | 77, 78 | rpdivcld 9789 | 
. . . 4
⊢ (𝜑 → (2 / 𝑀) ∈
ℝ+) | 
| 80 | 79 | rpred 9771 | 
. . 3
⊢ (𝜑 → (2 / 𝑀) ∈ ℝ) | 
| 81 | 71 | a1i 9 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈
ℝ+) | 
| 82 | 45 | nnzd 9447 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ) | 
| 83 | 81, 82 | rpexpcld 10789 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈
ℝ+) | 
| 84 | 83 | rprecred 9783 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ) | 
| 85 |   | cvgcmp2n.lt | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) | 
| 86 | 45, 85 | syldan 282 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) | 
| 87 | 41, 51, 84, 86 | fsumle 11628 | 
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘))) | 
| 88 |   | 2cnd 9063 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ) | 
| 89 | 81 | rpap0d 9777 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0) | 
| 90 | 88, 89, 82 | exprecapd 10773 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) | 
| 91 | 90 | eqcomd 2202 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘)) | 
| 92 | 91 | sumeq2dv 11533 | 
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) | 
| 93 | 87, 92 | breqtrd 4059 | 
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) | 
| 94 |   | fzval3 10280 | 
. . . . . . 7
⊢ (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) | 
| 95 | 28, 94 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) | 
| 96 | 95 | sumeq1d 11531 | 
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) | 
| 97 | 93, 96 | breqtrd 4059 | 
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) | 
| 98 |   | halfcn 9205 | 
. . . . . 6
⊢ (1 / 2)
∈ ℂ | 
| 99 | 98 | a1i 9 | 
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) | 
| 100 |   | 1re 8025 | 
. . . . . . 7
⊢ 1 ∈
ℝ | 
| 101 |   | halflt1 9208 | 
. . . . . . 7
⊢ (1 / 2)
< 1 | 
| 102 | 62, 100, 101 | ltapii 8662 | 
. . . . . 6
⊢ (1 / 2) #
1 | 
| 103 | 102 | a1i 9 | 
. . . . 5
⊢ (𝜑 → (1 / 2) #
1) | 
| 104 |   | eluzp1p1 9627 | 
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 105 | 3, 104 | syl 14 | 
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) | 
| 106 | 99, 103, 64, 105 | geosergap 11671 | 
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) | 
| 107 | 97, 106 | breqtrd 4059 | 
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) | 
| 108 | 73 | a1i 9 | 
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℝ+) | 
| 109 | 28 | peano2zd 9451 | 
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) | 
| 110 | 108, 109 | rpexpcld 10789 | 
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ+) | 
| 111 | 110 | rpred 9771 | 
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) | 
| 112 | 65, 111 | resubcld 8407 | 
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) | 
| 113 | 2 | nnrecred 9037 | 
. . . . 5
⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) | 
| 114 | 65, 110 | ltsubrpd 9804 | 
. . . . . 6
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < ((1
/ 2)↑(𝑀 +
1))) | 
| 115 |   | 2cnd 9063 | 
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) | 
| 116 | 77 | rpap0d 9777 | 
. . . . . . . 8
⊢ (𝜑 → 2 # 0) | 
| 117 | 115, 116,
40 | exprecapd 10773 | 
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1)))) | 
| 118 | 42 | nnred 9003 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) | 
| 119 | 77, 40 | rpexpcld 10789 | 
. . . . . . . . . 10
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈
ℝ+) | 
| 120 | 119 | rpred 9771 | 
. . . . . . . . 9
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ) | 
| 121 |   | 2z 9354 | 
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ | 
| 122 |   | uzid 9615 | 
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) | 
| 123 | 121, 122 | ax-mp 5 | 
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) | 
| 124 | 123 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
(ℤ≥‘2)) | 
| 125 |   | bernneq3 10754 | 
. . . . . . . . . 10
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝑀 + 1) ∈ ℕ0) →
(𝑀 + 1) < (2↑(𝑀 + 1))) | 
| 126 | 124, 64, 125 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1))) | 
| 127 | 17, 118, 120, 18, 126 | lttrd 8152 | 
. . . . . . . 8
⊢ (𝜑 → 𝑀 < (2↑(𝑀 + 1))) | 
| 128 | 78, 119 | ltrecd 9790 | 
. . . . . . . 8
⊢ (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))) | 
| 129 | 127, 128 | mpbid 147 | 
. . . . . . 7
⊢ (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)) | 
| 130 | 117, 129 | eqbrtrd 4055 | 
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀)) | 
| 131 | 112, 65, 113, 114, 130 | lttrd 8152 | 
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < (1 /
𝑀)) | 
| 132 | 112, 113,
77, 131 | ltmul1dd 9827 | 
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) < ((1 / 𝑀) ·
2)) | 
| 133 | 70 | oveq2i 5933 | 
. . . . . 6
⊢ ((((1 /
2)↑(𝑀 + 1)) −
((1 / 2)↑(𝑁 + 1))) /
(1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 /
2)) | 
| 134 | 112 | recnd 8055 | 
. . . . . . 7
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℂ) | 
| 135 |   | 1cnd 8042 | 
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) | 
| 136 |   | 1ap0 8617 | 
. . . . . . . 8
⊢ 1 #
0 | 
| 137 | 136 | a1i 9 | 
. . . . . . 7
⊢ (𝜑 → 1 # 0) | 
| 138 | 134, 135,
115, 137, 116 | divdivap2d 8850 | 
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1 /
2)) = (((((1 / 2)↑(𝑀 +
1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1)) | 
| 139 | 133, 138 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) /
1)) | 
| 140 | 134, 115 | mulcld 8047 | 
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) ∈ ℂ) | 
| 141 | 140 | div1d 8807 | 
. . . . 5
⊢ (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) | 
| 142 | 139, 141 | eqtrd 2229 | 
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) | 
| 143 | 17 | recnd 8055 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 144 | 2 | nnap0d 9036 | 
. . . . 5
⊢ (𝜑 → 𝑀 # 0) | 
| 145 | 115, 143,
144 | divrecap2d 8821 | 
. . . 4
⊢ (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2)) | 
| 146 | 132, 142,
145 | 3brtr4d 4065 | 
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) < (2 / 𝑀)) | 
| 147 | 52, 76, 80, 107, 146 | lelttrd 8151 | 
. 2
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) < (2 / 𝑀)) | 
| 148 | 61, 147 | eqbrtrd 4055 | 
1
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) |