Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs GIF version

Theorem cvgcmp2nlemabs 12919
Description: Lemma for cvgcmp2n 12920. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
cvgcmp2n.ge0 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
cvgcmp2n.lt ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
cvgcmp2nlemabs.m (𝜑𝑀 ∈ ℕ)
cvgcmp2nlemabs.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgcmp2nlemabs (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2116 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) = (𝐺𝑘))
2 cvgcmp2nlemabs.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
3 cvgcmp2nlemabs.n . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluznn 9296 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
52, 3, 4syl2anc 406 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6 elnnuz 9264 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6sylib 121 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
8 elnnuz 9264 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
9 cvgcmp2n.cl . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
109recnd 7718 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
118, 10sylan2br 284 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) ∈ ℂ)
121, 7, 11fsum3ser 11058 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑁))
13 nnuz 9263 . . . . . . . . 9 ℕ = (ℤ‘1)
142, 13syl6eleq 2207 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
151, 14, 11fsum3ser 11058 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑀))
1612, 15oveq12d 5746 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
172nnred 8643 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1817ltp1d 8598 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
19 fzdisj 9725 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2018, 19syl 14 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
21 eluzle 9240 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
223, 21syl 14 . . . . . . . . . . 11 (𝜑𝑀𝑁)
23 elfz1b 9763 . . . . . . . . . . 11 (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
242, 5, 22, 23syl3anbrc 1148 . . . . . . . . . 10 (𝜑𝑀 ∈ (1...𝑁))
25 fzsplit 9724 . . . . . . . . . 10 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2624, 25syl 14 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
27 1zzd 8985 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
285nnzd 9076 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2927, 28fzfigd 10097 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
30 elfznn 9727 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
3130, 10sylan2 282 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐺𝑘) ∈ ℂ)
3220, 26, 29, 31fsumsplit 11068 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)))
3332eqcomd 2120 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘))
3429, 31fsumcl 11061 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) ∈ ℂ)
352nnzd 9076 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
3627, 35fzfigd 10097 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
37 elfznn 9727 . . . . . . . . . 10 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
3837, 10sylan2 282 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
3936, 38fsumcl 11061 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) ∈ ℂ)
4035peano2zd 9080 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
4140, 28fzfigd 10097 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
422peano2nnd 8645 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ)
43 elfzuz 9695 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
44 eluznn 9296 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
4542, 43, 44syl2an 285 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
4645, 10syldan 278 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℂ)
4741, 46fsumcl 11061 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℂ)
4834, 39, 47subaddd 8014 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘)))
4933, 48mpbird 166 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5016, 49eqtr3d 2149 . . . . 5 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5145, 9syldan 278 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℝ)
5241, 51fsumrecl 11062 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℝ)
5350, 52eqeltrd 2191 . . . 4 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ)
5442nnzd 9076 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
5554, 28fzfigd 10097 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
56 cvgcmp2n.ge0 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
5745, 56syldan 278 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺𝑘))
5855, 51, 57fsumge0 11120 . . . . 5 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5958, 50breqtrrd 3921 . . . 4 (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6053, 59absidd 10831 . . 3 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6160, 50eqtrd 2147 . 2 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
62 halfre 8837 . . . . . . 7 (1 / 2) ∈ ℝ
6362a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ)
6442nnnn0d 8934 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6563, 64reexpcld 10334 . . . . 5 (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈ ℝ)
665peano2nnd 8645 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 8934 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6863, 67reexpcld 10334 . . . . 5 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
6965, 68resubcld 8062 . . . 4 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
70 1mhlfehlf 8842 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
71 2rp 9348 . . . . . . 7 2 ∈ ℝ+
72 rpreccl 9369 . . . . . . 7 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 7 . . . . . 6 (1 / 2) ∈ ℝ+
7470, 73eqeltri 2187 . . . . 5 (1 − (1 / 2)) ∈ ℝ+
7574a1i 9 . . . 4 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7669, 75rerpdivcld 9414 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) ∈ ℝ)
7771a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
782nnrpd 9381 . . . . 5 (𝜑𝑀 ∈ ℝ+)
7977, 78rpdivcld 9400 . . . 4 (𝜑 → (2 / 𝑀) ∈ ℝ+)
8079rpred 9382 . . 3 (𝜑 → (2 / 𝑀) ∈ ℝ)
8171a1i 9 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℝ+)
8245nnzd 9076 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ)
8381, 82rpexpcld 10341 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈ ℝ+)
8483rprecred 9394 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ)
85 cvgcmp2n.lt . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8645, 85syldan 278 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8741, 51, 84, 86fsumle 11124 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)))
88 2cnd 8703 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ)
8981rpap0d 9388 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0)
9088, 89, 82exprecapd 10325 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
9190eqcomd 2120 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘))
9291sumeq2dv 11029 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
9387, 92breqtrd 3919 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
94 fzval3 9874 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9528, 94syl 14 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9695sumeq1d 11027 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
9793, 96breqtrd 3919 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
98 halfcn 8838 . . . . . 6 (1 / 2) ∈ ℂ
9998a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
100 1re 7689 . . . . . . 7 1 ∈ ℝ
101 halflt1 8841 . . . . . . 7 (1 / 2) < 1
10262, 100, 101ltapii 8314 . . . . . 6 (1 / 2) # 1
103102a1i 9 . . . . 5 (𝜑 → (1 / 2) # 1)
104 eluzp1p1 9253 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
1053, 104syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
10699, 103, 64, 105geosergap 11167 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10797, 106breqtrd 3919 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10873a1i 9 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ+)
10928peano2zd 9080 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
110108, 109rpexpcld 10341 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ+)
111110rpred 9382 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
11265, 111resubcld 8062 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
1132nnrecred 8677 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
11465, 110ltsubrpd 9415 . . . . . 6 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < ((1 / 2)↑(𝑀 + 1)))
115 2cnd 8703 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
11677rpap0d 9388 . . . . . . . 8 (𝜑 → 2 # 0)
117115, 116, 40exprecapd 10325 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1))))
11842nnred 8643 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℝ)
11977, 40rpexpcld 10341 . . . . . . . . . 10 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ+)
120119rpred 9382 . . . . . . . . 9 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ)
121 2z 8986 . . . . . . . . . . . 12 2 ∈ ℤ
122 uzid 9242 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
123121, 122ax-mp 7 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
124123a1i 9 . . . . . . . . . 10 (𝜑 → 2 ∈ (ℤ‘2))
125 bernneq3 10307 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ (𝑀 + 1) ∈ ℕ0) → (𝑀 + 1) < (2↑(𝑀 + 1)))
126124, 64, 125syl2anc 406 . . . . . . . . 9 (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1)))
12717, 118, 120, 18, 126lttrd 7811 . . . . . . . 8 (𝜑𝑀 < (2↑(𝑀 + 1)))
12878, 119ltrecd 9401 . . . . . . . 8 (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)))
129127, 128mpbid 146 . . . . . . 7 (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))
130117, 129eqbrtrd 3915 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀))
131112, 65, 113, 114, 130lttrd 7811 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < (1 / 𝑀))
132112, 113, 77, 131ltmul1dd 9438 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) < ((1 / 𝑀) · 2))
13370oveq2i 5739 . . . . . 6 ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2))
134112recnd 7718 . . . . . . 7 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℂ)
135 1cnd 7706 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
136 1ap0 8270 . . . . . . . 8 1 # 0
137136a1i 9 . . . . . . 7 (𝜑 → 1 # 0)
138134, 135, 115, 137, 116divdivap2d 8496 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2)) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
139133, 138syl5eq 2159 . . . . 5 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
140134, 115mulcld 7710 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) ∈ ℂ)
141140div1d 8453 . . . . 5 (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
142139, 141eqtrd 2147 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
14317recnd 7718 . . . . 5 (𝜑𝑀 ∈ ℂ)
1442nnap0d 8676 . . . . 5 (𝜑𝑀 # 0)
145115, 143, 144divrecap2d 8467 . . . 4 (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2))
146132, 142, 1453brtr4d 3925 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) < (2 / 𝑀))
14752, 76, 80, 107, 146lelttrd 7810 . 2 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) < (2 / 𝑀))
14861, 147eqbrtrd 3915 1 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  cun 3035  cin 3036  c0 3329   class class class wbr 3895  cfv 5081  (class class class)co 5728  cc 7545  cr 7546  0cc0 7547  1c1 7548   + caddc 7550   · cmul 7552   < clt 7724  cle 7725  cmin 7856   # cap 8261   / cdiv 8345  cn 8630  2c2 8681  0cn0 8881  cz 8958  cuz 9228  +crp 9343  ...cfz 9683  ..^cfzo 9812  seqcseq 10111  cexp 10185  abscabs 10661  Σcsu 11014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-ico 9570  df-fz 9684  df-fzo 9813  df-seqfrec 10112  df-exp 10186  df-ihash 10415  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-clim 10940  df-sumdc 11015
This theorem is referenced by:  cvgcmp2n  12920
  Copyright terms: Public domain W3C validator