Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs GIF version

Theorem cvgcmp2nlemabs 15763
Description: Lemma for cvgcmp2n 15764. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
cvgcmp2n.ge0 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
cvgcmp2n.lt ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
cvgcmp2nlemabs.m (𝜑𝑀 ∈ ℕ)
cvgcmp2nlemabs.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgcmp2nlemabs (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2197 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) = (𝐺𝑘))
2 cvgcmp2nlemabs.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
3 cvgcmp2nlemabs.n . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluznn 9691 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
52, 3, 4syl2anc 411 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6 elnnuz 9655 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6sylib 122 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
8 elnnuz 9655 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
9 cvgcmp2n.cl . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
109recnd 8072 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
118, 10sylan2br 288 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) ∈ ℂ)
121, 7, 11fsum3ser 11579 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑁))
13 nnuz 9654 . . . . . . . . 9 ℕ = (ℤ‘1)
142, 13eleqtrdi 2289 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
151, 14, 11fsum3ser 11579 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑀))
1612, 15oveq12d 5943 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
172nnred 9020 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1817ltp1d 8974 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
19 fzdisj 10144 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2018, 19syl 14 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
21 eluzle 9630 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
223, 21syl 14 . . . . . . . . . . 11 (𝜑𝑀𝑁)
23 elfz1b 10182 . . . . . . . . . . 11 (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
242, 5, 22, 23syl3anbrc 1183 . . . . . . . . . 10 (𝜑𝑀 ∈ (1...𝑁))
25 fzsplit 10143 . . . . . . . . . 10 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2624, 25syl 14 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
27 1zzd 9370 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
285nnzd 9464 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2927, 28fzfigd 10540 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
30 elfznn 10146 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
3130, 10sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐺𝑘) ∈ ℂ)
3220, 26, 29, 31fsumsplit 11589 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)))
3332eqcomd 2202 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘))
3429, 31fsumcl 11582 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) ∈ ℂ)
352nnzd 9464 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
3627, 35fzfigd 10540 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
37 elfznn 10146 . . . . . . . . . 10 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
3837, 10sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
3936, 38fsumcl 11582 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) ∈ ℂ)
4035peano2zd 9468 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
4140, 28fzfigd 10540 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
422peano2nnd 9022 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ)
43 elfzuz 10113 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
44 eluznn 9691 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
4542, 43, 44syl2an 289 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
4645, 10syldan 282 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℂ)
4741, 46fsumcl 11582 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℂ)
4834, 39, 47subaddd 8372 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘)))
4933, 48mpbird 167 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5016, 49eqtr3d 2231 . . . . 5 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5145, 9syldan 282 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℝ)
5241, 51fsumrecl 11583 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℝ)
5350, 52eqeltrd 2273 . . . 4 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ)
5442nnzd 9464 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
5554, 28fzfigd 10540 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
56 cvgcmp2n.ge0 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
5745, 56syldan 282 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺𝑘))
5855, 51, 57fsumge0 11641 . . . . 5 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5958, 50breqtrrd 4062 . . . 4 (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6053, 59absidd 11349 . . 3 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6160, 50eqtrd 2229 . 2 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
62 halfre 9221 . . . . . . 7 (1 / 2) ∈ ℝ
6362a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ)
6442nnnn0d 9319 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6563, 64reexpcld 10799 . . . . 5 (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈ ℝ)
665peano2nnd 9022 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 9319 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6863, 67reexpcld 10799 . . . . 5 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
6965, 68resubcld 8424 . . . 4 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
70 1mhlfehlf 9226 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
71 2rp 9750 . . . . . . 7 2 ∈ ℝ+
72 rpreccl 9772 . . . . . . 7 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 5 . . . . . 6 (1 / 2) ∈ ℝ+
7470, 73eqeltri 2269 . . . . 5 (1 − (1 / 2)) ∈ ℝ+
7574a1i 9 . . . 4 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7669, 75rerpdivcld 9820 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) ∈ ℝ)
7771a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
782nnrpd 9786 . . . . 5 (𝜑𝑀 ∈ ℝ+)
7977, 78rpdivcld 9806 . . . 4 (𝜑 → (2 / 𝑀) ∈ ℝ+)
8079rpred 9788 . . 3 (𝜑 → (2 / 𝑀) ∈ ℝ)
8171a1i 9 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℝ+)
8245nnzd 9464 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ)
8381, 82rpexpcld 10806 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈ ℝ+)
8483rprecred 9800 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ)
85 cvgcmp2n.lt . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8645, 85syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8741, 51, 84, 86fsumle 11645 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)))
88 2cnd 9080 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ)
8981rpap0d 9794 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0)
9088, 89, 82exprecapd 10790 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
9190eqcomd 2202 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘))
9291sumeq2dv 11550 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
9387, 92breqtrd 4060 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
94 fzval3 10297 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9528, 94syl 14 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9695sumeq1d 11548 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
9793, 96breqtrd 4060 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
98 halfcn 9222 . . . . . 6 (1 / 2) ∈ ℂ
9998a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
100 1re 8042 . . . . . . 7 1 ∈ ℝ
101 halflt1 9225 . . . . . . 7 (1 / 2) < 1
10262, 100, 101ltapii 8679 . . . . . 6 (1 / 2) # 1
103102a1i 9 . . . . 5 (𝜑 → (1 / 2) # 1)
104 eluzp1p1 9644 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
1053, 104syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
10699, 103, 64, 105geosergap 11688 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10797, 106breqtrd 4060 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10873a1i 9 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ+)
10928peano2zd 9468 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
110108, 109rpexpcld 10806 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ+)
111110rpred 9788 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
11265, 111resubcld 8424 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
1132nnrecred 9054 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
11465, 110ltsubrpd 9821 . . . . . 6 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < ((1 / 2)↑(𝑀 + 1)))
115 2cnd 9080 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
11677rpap0d 9794 . . . . . . . 8 (𝜑 → 2 # 0)
117115, 116, 40exprecapd 10790 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1))))
11842nnred 9020 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℝ)
11977, 40rpexpcld 10806 . . . . . . . . . 10 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ+)
120119rpred 9788 . . . . . . . . 9 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ)
121 2z 9371 . . . . . . . . . . . 12 2 ∈ ℤ
122 uzid 9632 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
123121, 122ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
124123a1i 9 . . . . . . . . . 10 (𝜑 → 2 ∈ (ℤ‘2))
125 bernneq3 10771 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ (𝑀 + 1) ∈ ℕ0) → (𝑀 + 1) < (2↑(𝑀 + 1)))
126124, 64, 125syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1)))
12717, 118, 120, 18, 126lttrd 8169 . . . . . . . 8 (𝜑𝑀 < (2↑(𝑀 + 1)))
12878, 119ltrecd 9807 . . . . . . . 8 (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)))
129127, 128mpbid 147 . . . . . . 7 (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))
130117, 129eqbrtrd 4056 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀))
131112, 65, 113, 114, 130lttrd 8169 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < (1 / 𝑀))
132112, 113, 77, 131ltmul1dd 9844 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) < ((1 / 𝑀) · 2))
13370oveq2i 5936 . . . . . 6 ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2))
134112recnd 8072 . . . . . . 7 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℂ)
135 1cnd 8059 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
136 1ap0 8634 . . . . . . . 8 1 # 0
137136a1i 9 . . . . . . 7 (𝜑 → 1 # 0)
138134, 135, 115, 137, 116divdivap2d 8867 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2)) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
139133, 138eqtrid 2241 . . . . 5 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
140134, 115mulcld 8064 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) ∈ ℂ)
141140div1d 8824 . . . . 5 (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
142139, 141eqtrd 2229 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
14317recnd 8072 . . . . 5 (𝜑𝑀 ∈ ℂ)
1442nnap0d 9053 . . . . 5 (𝜑𝑀 # 0)
145115, 143, 144divrecap2d 8838 . . . 4 (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2))
146132, 142, 1453brtr4d 4066 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) < (2 / 𝑀))
14752, 76, 80, 107, 146lelttrd 8168 . 2 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) < (2 / 𝑀))
14861, 147eqbrtrd 4056 1 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  cun 3155  cin 3156  c0 3451   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  +crp 9745  ...cfz 10100  ..^cfzo 10234  seqcseq 10556  cexp 10647  abscabs 11179  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  cvgcmp2n  15764
  Copyright terms: Public domain W3C validator