Proof of Theorem cvgcmp2nlemabs
| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) = (𝐺‘𝑘)) |
| 2 | | cvgcmp2nlemabs.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 3 | | cvgcmp2nlemabs.n |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | | eluznn 9691 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈
(ℤ≥‘𝑀)) → 𝑁 ∈ ℕ) |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 6 | | elnnuz 9655 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| 7 | 5, 6 | sylib 122 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 8 | | elnnuz 9655 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈
(ℤ≥‘1)) |
| 9 | | cvgcmp2n.cl |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
| 10 | 9 | recnd 8072 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
| 11 | 8, 10 | sylan2br 288 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘1))
→ (𝐺‘𝑘) ∈
ℂ) |
| 12 | 1, 7, 11 | fsum3ser 11579 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑁)) |
| 13 | | nnuz 9654 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 14 | 2, 13 | eleqtrdi 2289 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 15 | 1, 14, 11 | fsum3ser 11579 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) = (seq1( + , 𝐺)‘𝑀)) |
| 16 | 12, 15 | oveq12d 5943 |
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
| 17 | 2 | nnred 9020 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 18 | 17 | ltp1d 8974 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
| 19 | | fzdisj 10144 |
. . . . . . . . . 10
⊢ (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅) |
| 21 | | eluzle 9630 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| 22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 23 | | elfz1b 10182 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁)) |
| 24 | 2, 5, 22, 23 | syl3anbrc 1183 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (1...𝑁)) |
| 25 | | fzsplit 10143 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
| 27 | | 1zzd 9370 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
| 28 | 5 | nnzd 9464 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 29 | 27, 28 | fzfigd 10540 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 30 | | elfznn 10146 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
| 31 | 30, 10 | sylan2 286 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
| 32 | 20, 26, 29, 31 | fsumsplit 11589 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘))) |
| 33 | 32 | eqcomd 2202 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘)) |
| 34 | 29, 31 | fsumcl 11582 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) ∈ ℂ) |
| 35 | 2 | nnzd 9464 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 36 | 27, 35 | fzfigd 10540 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 37 | | elfznn 10146 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ) |
| 38 | 37, 10 | sylan2 286 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (1...𝑀)) → (𝐺‘𝑘) ∈ ℂ) |
| 39 | 36, 38 | fsumcl 11582 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) ∈ ℂ) |
| 40 | 35 | peano2zd 9468 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 41 | 40, 28 | fzfigd 10540 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
| 42 | 2 | peano2nnd 9022 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 43 | | elfzuz 10113 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
| 44 | | eluznn 9691 |
. . . . . . . . . . 11
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ ℕ) |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ) |
| 46 | 45, 10 | syldan 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℂ) |
| 47 | 41, 46 | fsumcl 11582 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℂ) |
| 48 | 34, 39, 47 | subaddd 8372 |
. . . . . . 7
⊢ (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘))) |
| 49 | 33, 48 | mpbird 167 |
. . . . . 6
⊢ (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺‘𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺‘𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
| 50 | 16, 49 | eqtr3d 2231 |
. . . . 5
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
| 51 | 45, 9 | syldan 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ∈ ℝ) |
| 52 | 41, 51 | fsumrecl 11583 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ∈ ℝ) |
| 53 | 50, 52 | eqeltrd 2273 |
. . . 4
⊢ (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ) |
| 54 | 42 | nnzd 9464 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 55 | 54, 28 | fzfigd 10540 |
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
| 56 | | cvgcmp2n.ge0 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
| 57 | 45, 56 | syldan 282 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺‘𝑘)) |
| 58 | 55, 51, 57 | fsumge0 11641 |
. . . . 5
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
| 59 | 58, 50 | breqtrrd 4062 |
. . . 4
⊢ (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
| 60 | 53, 59 | absidd 11349 |
. . 3
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) |
| 61 | 60, 50 | eqtrd 2229 |
. 2
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘)) |
| 62 | | halfre 9221 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ |
| 63 | 62 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 64 | 42 | nnnn0d 9319 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
| 65 | 63, 64 | reexpcld 10799 |
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈
ℝ) |
| 66 | 5 | peano2nnd 9022 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 67 | 66 | nnnn0d 9319 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 68 | 63, 67 | reexpcld 10799 |
. . . . 5
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) |
| 69 | 65, 68 | resubcld 8424 |
. . . 4
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) |
| 70 | | 1mhlfehlf 9226 |
. . . . . 6
⊢ (1
− (1 / 2)) = (1 / 2) |
| 71 | | 2rp 9750 |
. . . . . . 7
⊢ 2 ∈
ℝ+ |
| 72 | | rpreccl 9772 |
. . . . . . 7
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
⊢ (1 / 2)
∈ ℝ+ |
| 74 | 70, 73 | eqeltri 2269 |
. . . . 5
⊢ (1
− (1 / 2)) ∈ ℝ+ |
| 75 | 74 | a1i 9 |
. . . 4
⊢ (𝜑 → (1 − (1 / 2)) ∈
ℝ+) |
| 76 | 69, 75 | rerpdivcld 9820 |
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) ∈ ℝ) |
| 77 | 71 | a1i 9 |
. . . . 5
⊢ (𝜑 → 2 ∈
ℝ+) |
| 78 | 2 | nnrpd 9786 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
| 79 | 77, 78 | rpdivcld 9806 |
. . . 4
⊢ (𝜑 → (2 / 𝑀) ∈
ℝ+) |
| 80 | 79 | rpred 9788 |
. . 3
⊢ (𝜑 → (2 / 𝑀) ∈ ℝ) |
| 81 | 71 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈
ℝ+) |
| 82 | 45 | nnzd 9464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ) |
| 83 | 81, 82 | rpexpcld 10806 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈
ℝ+) |
| 84 | 83 | rprecred 9800 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ) |
| 85 | | cvgcmp2n.lt |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
| 86 | 45, 85 | syldan 282 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺‘𝑘) ≤ (1 / (2↑𝑘))) |
| 87 | 41, 51, 84, 86 | fsumle 11645 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘))) |
| 88 | | 2cnd 9080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ) |
| 89 | 81 | rpap0d 9794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0) |
| 90 | 88, 89, 82 | exprecapd 10790 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 91 | 90 | eqcomd 2202 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘)) |
| 92 | 91 | sumeq2dv 11550 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) |
| 93 | 87, 92 | breqtrd 4060 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘)) |
| 94 | | fzval3 10297 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) |
| 95 | 28, 94 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1))) |
| 96 | 95 | sumeq1d 11548 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) |
| 97 | 93, 96 | breqtrd 4060 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘)) |
| 98 | | halfcn 9222 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
| 99 | 98 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
| 100 | | 1re 8042 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 101 | | halflt1 9225 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
| 102 | 62, 100, 101 | ltapii 8679 |
. . . . . 6
⊢ (1 / 2) #
1 |
| 103 | 102 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 / 2) #
1) |
| 104 | | eluzp1p1 9644 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 105 | 3, 104 | syl 14 |
. . . . 5
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 106 | 99, 103, 64, 105 | geosergap 11688 |
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) |
| 107 | 97, 106 | breqtrd 4060 |
. . 3
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 /
2)))) |
| 108 | 73 | a1i 9 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℝ+) |
| 109 | 28 | peano2zd 9468 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 110 | 108, 109 | rpexpcld 10806 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ+) |
| 111 | 110 | rpred 9788 |
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈
ℝ) |
| 112 | 65, 111 | resubcld 8424 |
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℝ) |
| 113 | 2 | nnrecred 9054 |
. . . . 5
⊢ (𝜑 → (1 / 𝑀) ∈ ℝ) |
| 114 | 65, 110 | ltsubrpd 9821 |
. . . . . 6
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < ((1
/ 2)↑(𝑀 +
1))) |
| 115 | | 2cnd 9080 |
. . . . . . . 8
⊢ (𝜑 → 2 ∈
ℂ) |
| 116 | 77 | rpap0d 9794 |
. . . . . . . 8
⊢ (𝜑 → 2 # 0) |
| 117 | 115, 116,
40 | exprecapd 10790 |
. . . . . . 7
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1)))) |
| 118 | 42 | nnred 9020 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
| 119 | 77, 40 | rpexpcld 10806 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈
ℝ+) |
| 120 | 119 | rpred 9788 |
. . . . . . . . 9
⊢ (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ) |
| 121 | | 2z 9371 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
| 122 | | uzid 9632 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 2 ∈
(ℤ≥‘2) |
| 124 | 123 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈
(ℤ≥‘2)) |
| 125 | | bernneq3 10771 |
. . . . . . . . . 10
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝑀 + 1) ∈ ℕ0) →
(𝑀 + 1) < (2↑(𝑀 + 1))) |
| 126 | 124, 64, 125 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1))) |
| 127 | 17, 118, 120, 18, 126 | lttrd 8169 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 < (2↑(𝑀 + 1))) |
| 128 | 78, 119 | ltrecd 9807 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))) |
| 129 | 127, 128 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)) |
| 130 | 117, 129 | eqbrtrd 4056 |
. . . . . 6
⊢ (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀)) |
| 131 | 112, 65, 113, 114, 130 | lttrd 8169 |
. . . . 5
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) < (1 /
𝑀)) |
| 132 | 112, 113,
77, 131 | ltmul1dd 9844 |
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) < ((1 / 𝑀) ·
2)) |
| 133 | 70 | oveq2i 5936 |
. . . . . 6
⊢ ((((1 /
2)↑(𝑀 + 1)) −
((1 / 2)↑(𝑁 + 1))) /
(1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 /
2)) |
| 134 | 112 | recnd 8072 |
. . . . . . 7
⊢ (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ∈
ℂ) |
| 135 | | 1cnd 8059 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
| 136 | | 1ap0 8634 |
. . . . . . . 8
⊢ 1 #
0 |
| 137 | 136 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → 1 # 0) |
| 138 | 134, 135,
115, 137, 116 | divdivap2d 8867 |
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1 /
2)) = (((((1 / 2)↑(𝑀 +
1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1)) |
| 139 | 133, 138 | eqtrid 2241 |
. . . . 5
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) /
1)) |
| 140 | 134, 115 | mulcld 8064 |
. . . . . 6
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) ∈ ℂ) |
| 141 | 140 | div1d 8824 |
. . . . 5
⊢ (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) ·
2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) |
| 142 | 139, 141 | eqtrd 2229 |
. . . 4
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ·
2)) |
| 143 | 17 | recnd 8072 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 144 | 2 | nnap0d 9053 |
. . . . 5
⊢ (𝜑 → 𝑀 # 0) |
| 145 | 115, 143,
144 | divrecap2d 8838 |
. . . 4
⊢ (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2)) |
| 146 | 132, 142,
145 | 3brtr4d 4066 |
. . 3
⊢ (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 /
2)↑(𝑁 + 1))) / (1
− (1 / 2))) < (2 / 𝑀)) |
| 147 | 52, 76, 80, 107, 146 | lelttrd 8168 |
. 2
⊢ (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺‘𝑘) < (2 / 𝑀)) |
| 148 | 61, 147 | eqbrtrd 4056 |
1
⊢ (𝜑 → (abs‘((seq1( + ,
𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀)) |