Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs GIF version

Theorem cvgcmp2nlemabs 16311
Description: Lemma for cvgcmp2n 16312. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting (seq1( + , 𝐺)‘𝑁) as the sum of (seq1( + , 𝐺)‘𝑀) and a term which gets smaller as 𝑀 gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
cvgcmp2n.ge0 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
cvgcmp2n.lt ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
cvgcmp2nlemabs.m (𝜑𝑀 ∈ ℕ)
cvgcmp2nlemabs.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgcmp2nlemabs (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Distinct variable groups:   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2210 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) = (𝐺𝑘))
2 cvgcmp2nlemabs.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℕ)
3 cvgcmp2nlemabs.n . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluznn 9763 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑁 ∈ ℕ)
52, 3, 4syl2anc 411 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
6 elnnuz 9727 . . . . . . . . 9 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
75, 6sylib 122 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
8 elnnuz 9727 . . . . . . . . 9 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
9 cvgcmp2n.cl . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
109recnd 8143 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
118, 10sylan2br 288 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘1)) → (𝐺𝑘) ∈ ℂ)
121, 7, 11fsum3ser 11874 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑁))
13 nnuz 9726 . . . . . . . . 9 ℕ = (ℤ‘1)
142, 13eleqtrdi 2302 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘1))
151, 14, 11fsum3ser 11874 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) = (seq1( + , 𝐺)‘𝑀))
1612, 15oveq12d 5992 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
172nnred 9091 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
1817ltp1d 9045 . . . . . . . . . 10 (𝜑𝑀 < (𝑀 + 1))
19 fzdisj 10216 . . . . . . . . . 10 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
2018, 19syl 14 . . . . . . . . 9 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
21 eluzle 9702 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
223, 21syl 14 . . . . . . . . . . 11 (𝜑𝑀𝑁)
23 elfz1b 10254 . . . . . . . . . . 11 (𝑀 ∈ (1...𝑁) ↔ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀𝑁))
242, 5, 22, 23syl3anbrc 1186 . . . . . . . . . 10 (𝜑𝑀 ∈ (1...𝑁))
25 fzsplit 10215 . . . . . . . . . 10 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
2624, 25syl 14 . . . . . . . . 9 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
27 1zzd 9441 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
285nnzd 9536 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
2927, 28fzfigd 10620 . . . . . . . . 9 (𝜑 → (1...𝑁) ∈ Fin)
30 elfznn 10218 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
3130, 10sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑁)) → (𝐺𝑘) ∈ ℂ)
3220, 26, 29, 31fsumsplit 11884 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) = (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)))
3332eqcomd 2215 . . . . . . 7 (𝜑 → (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘))
3429, 31fsumcl 11877 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) ∈ ℂ)
352nnzd 9536 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
3627, 35fzfigd 10620 . . . . . . . . 9 (𝜑 → (1...𝑀) ∈ Fin)
37 elfznn 10218 . . . . . . . . . 10 (𝑘 ∈ (1...𝑀) → 𝑘 ∈ ℕ)
3837, 10sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) ∈ ℂ)
3936, 38fsumcl 11877 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) ∈ ℂ)
4035peano2zd 9540 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℤ)
4140, 28fzfigd 10620 . . . . . . . . 9 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
422peano2nnd 9093 . . . . . . . . . . 11 (𝜑 → (𝑀 + 1) ∈ ℕ)
43 elfzuz 10185 . . . . . . . . . . 11 (𝑘 ∈ ((𝑀 + 1)...𝑁) → 𝑘 ∈ (ℤ‘(𝑀 + 1)))
44 eluznn 9763 . . . . . . . . . . 11 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
4542, 43, 44syl2an 289 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℕ)
4645, 10syldan 282 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℂ)
4741, 46fsumcl 11877 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℂ)
4834, 39, 47subaddd 8443 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ↔ (Σ𝑘 ∈ (1...𝑀)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘)) = Σ𝑘 ∈ (1...𝑁)(𝐺𝑘)))
4933, 48mpbird 167 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (1...𝑁)(𝐺𝑘) − Σ𝑘 ∈ (1...𝑀)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5016, 49eqtr3d 2244 . . . . 5 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5145, 9syldan 282 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ∈ ℝ)
5241, 51fsumrecl 11878 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ∈ ℝ)
5350, 52eqeltrd 2286 . . . 4 (𝜑 → ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)) ∈ ℝ)
5442nnzd 9536 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
5554, 28fzfigd 10620 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
56 cvgcmp2n.ge0 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
5745, 56syldan 282 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝐺𝑘))
5855, 51, 57fsumge0 11936 . . . . 5 (𝜑 → 0 ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
5958, 50breqtrrd 4090 . . . 4 (𝜑 → 0 ≤ ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6053, 59absidd 11644 . . 3 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = ((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀)))
6160, 50eqtrd 2242 . 2 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘))
62 halfre 9292 . . . . . . 7 (1 / 2) ∈ ℝ
6362a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ)
6442nnnn0d 9390 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℕ0)
6563, 64reexpcld 10879 . . . . 5 (𝜑 → ((1 / 2)↑(𝑀 + 1)) ∈ ℝ)
665peano2nnd 9093 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ ℕ)
6766nnnn0d 9390 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ ℕ0)
6863, 67reexpcld 10879 . . . . 5 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
6965, 68resubcld 8495 . . . 4 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
70 1mhlfehlf 9297 . . . . . 6 (1 − (1 / 2)) = (1 / 2)
71 2rp 9822 . . . . . . 7 2 ∈ ℝ+
72 rpreccl 9844 . . . . . . 7 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
7371, 72ax-mp 5 . . . . . 6 (1 / 2) ∈ ℝ+
7470, 73eqeltri 2282 . . . . 5 (1 − (1 / 2)) ∈ ℝ+
7574a1i 9 . . . 4 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7669, 75rerpdivcld 9892 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) ∈ ℝ)
7771a1i 9 . . . . 5 (𝜑 → 2 ∈ ℝ+)
782nnrpd 9858 . . . . 5 (𝜑𝑀 ∈ ℝ+)
7977, 78rpdivcld 9878 . . . 4 (𝜑 → (2 / 𝑀) ∈ ℝ+)
8079rpred 9860 . . 3 (𝜑 → (2 / 𝑀) ∈ ℝ)
8171a1i 9 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℝ+)
8245nnzd 9536 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ ℤ)
8381, 82rpexpcld 10886 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (2↑𝑘) ∈ ℝ+)
8483rprecred 9872 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) ∈ ℝ)
85 cvgcmp2n.lt . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8645, 85syldan 282 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐺𝑘) ≤ (1 / (2↑𝑘)))
8741, 51, 84, 86fsumle 11940 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)))
88 2cnd 9151 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 ∈ ℂ)
8981rpap0d 9866 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 2 # 0)
9088, 89, 82exprecapd 10870 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
9190eqcomd 2215 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (1 / (2↑𝑘)) = ((1 / 2)↑𝑘))
9291sumeq2dv 11845 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(1 / (2↑𝑘)) = Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
9387, 92breqtrd 4088 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘))
94 fzval3 10377 . . . . . . 7 (𝑁 ∈ ℤ → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9528, 94syl 14 . . . . . 6 (𝜑 → ((𝑀 + 1)...𝑁) = ((𝑀 + 1)..^(𝑁 + 1)))
9695sumeq1d 11843 . . . . 5 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)((1 / 2)↑𝑘) = Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
9793, 96breqtrd 4088 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘))
98 halfcn 9293 . . . . . 6 (1 / 2) ∈ ℂ
9998a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
100 1re 8113 . . . . . . 7 1 ∈ ℝ
101 halflt1 9296 . . . . . . 7 (1 / 2) < 1
10262, 100, 101ltapii 8750 . . . . . 6 (1 / 2) # 1
103102a1i 9 . . . . 5 (𝜑 → (1 / 2) # 1)
104 eluzp1p1 9716 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
1053, 104syl 14 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (ℤ‘(𝑀 + 1)))
10699, 103, 64, 105geosergap 11983 . . . 4 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)..^(𝑁 + 1))((1 / 2)↑𝑘) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10797, 106breqtrd 4088 . . 3 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) ≤ ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))))
10873a1i 9 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ+)
10928peano2zd 9540 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
110108, 109rpexpcld 10886 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ+)
111110rpred 9860 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑁 + 1)) ∈ ℝ)
11265, 111resubcld 8495 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℝ)
1132nnrecred 9125 . . . . 5 (𝜑 → (1 / 𝑀) ∈ ℝ)
11465, 110ltsubrpd 9893 . . . . . 6 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < ((1 / 2)↑(𝑀 + 1)))
115 2cnd 9151 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
11677rpap0d 9866 . . . . . . . 8 (𝜑 → 2 # 0)
117115, 116, 40exprecapd 10870 . . . . . . 7 (𝜑 → ((1 / 2)↑(𝑀 + 1)) = (1 / (2↑(𝑀 + 1))))
11842nnred 9091 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℝ)
11977, 40rpexpcld 10886 . . . . . . . . . 10 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ+)
120119rpred 9860 . . . . . . . . 9 (𝜑 → (2↑(𝑀 + 1)) ∈ ℝ)
121 2z 9442 . . . . . . . . . . . 12 2 ∈ ℤ
122 uzid 9704 . . . . . . . . . . . 12 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
123121, 122ax-mp 5 . . . . . . . . . . 11 2 ∈ (ℤ‘2)
124123a1i 9 . . . . . . . . . 10 (𝜑 → 2 ∈ (ℤ‘2))
125 bernneq3 10851 . . . . . . . . . 10 ((2 ∈ (ℤ‘2) ∧ (𝑀 + 1) ∈ ℕ0) → (𝑀 + 1) < (2↑(𝑀 + 1)))
126124, 64, 125syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑀 + 1) < (2↑(𝑀 + 1)))
12717, 118, 120, 18, 126lttrd 8240 . . . . . . . 8 (𝜑𝑀 < (2↑(𝑀 + 1)))
12878, 119ltrecd 9879 . . . . . . . 8 (𝜑 → (𝑀 < (2↑(𝑀 + 1)) ↔ (1 / (2↑(𝑀 + 1))) < (1 / 𝑀)))
129127, 128mpbid 147 . . . . . . 7 (𝜑 → (1 / (2↑(𝑀 + 1))) < (1 / 𝑀))
130117, 129eqbrtrd 4084 . . . . . 6 (𝜑 → ((1 / 2)↑(𝑀 + 1)) < (1 / 𝑀))
131112, 65, 113, 114, 130lttrd 8240 . . . . 5 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) < (1 / 𝑀))
132112, 113, 77, 131ltmul1dd 9916 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) < ((1 / 𝑀) · 2))
13370oveq2i 5985 . . . . . 6 ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2))
134112recnd 8143 . . . . . . 7 (𝜑 → (((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) ∈ ℂ)
135 1cnd 8130 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
136 1ap0 8705 . . . . . . . 8 1 # 0
137136a1i 9 . . . . . . 7 (𝜑 → 1 # 0)
138134, 135, 115, 137, 116divdivap2d 8938 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 / 2)) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
139133, 138eqtrid 2254 . . . . 5 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1))
140134, 115mulcld 8135 . . . . . 6 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) ∈ ℂ)
141140div1d 8895 . . . . 5 (𝜑 → (((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2) / 1) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
142139, 141eqtrd 2242 . . . 4 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) = ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) · 2))
14317recnd 8143 . . . . 5 (𝜑𝑀 ∈ ℂ)
1442nnap0d 9124 . . . . 5 (𝜑𝑀 # 0)
145115, 143, 144divrecap2d 8909 . . . 4 (𝜑 → (2 / 𝑀) = ((1 / 𝑀) · 2))
146132, 142, 1453brtr4d 4094 . . 3 (𝜑 → ((((1 / 2)↑(𝑀 + 1)) − ((1 / 2)↑(𝑁 + 1))) / (1 − (1 / 2))) < (2 / 𝑀))
14752, 76, 80, 107, 146lelttrd 8239 . 2 (𝜑 → Σ𝑘 ∈ ((𝑀 + 1)...𝑁)(𝐺𝑘) < (2 / 𝑀))
14861, 147eqbrtrd 4084 1 (𝜑 → (abs‘((seq1( + , 𝐺)‘𝑁) − (seq1( + , 𝐺)‘𝑀))) < (2 / 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cun 3175  cin 3176  c0 3471   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972   < clt 8149  cle 8150  cmin 8285   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  0cn0 9337  cz 9414  cuz 9690  +crp 9817  ...cfz 10172  ..^cfzo 10306  seqcseq 10636  cexp 10727  abscabs 11474  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ico 10058  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  cvgcmp2n  16312
  Copyright terms: Public domain W3C validator