ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt GIF version

Theorem nninfdclemlt 12741
Description: Lemma for nninfdc 12743. The function from nninfdclemf 12739 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemlt.u (𝜑𝑈 ∈ ℕ)
nninfdclemlt.v (𝜑𝑉 ∈ ℕ)
nninfdclemlt.lt (𝜑𝑈 < 𝑉)
Assertion
Ref Expression
nninfdclemlt (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)

Proof of Theorem nninfdclemlt
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6 (𝜑𝑈 ∈ ℕ)
21peano2nnd 9033 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
32nnzd 9476 . . . 4 (𝜑 → (𝑈 + 1) ∈ ℤ)
4 nninfdclemlt.v . . . . 5 (𝜑𝑉 ∈ ℕ)
54nnzd 9476 . . . 4 (𝜑𝑉 ∈ ℤ)
6 nninfdclemlt.lt . . . . 5 (𝜑𝑈 < 𝑉)
7 nnltp1le 9415 . . . . . 6 ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
81, 4, 7syl2anc 411 . . . . 5 (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
96, 8mpbid 147 . . . 4 (𝜑 → (𝑈 + 1) ≤ 𝑉)
10 eluz2 9636 . . . 4 (𝑉 ∈ (ℤ‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉))
113, 5, 9, 10syl3anbrc 1183 . . 3 (𝜑𝑉 ∈ (ℤ‘(𝑈 + 1)))
12 eluzfz2 10136 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉))
1311, 12syl 14 . 2 (𝜑𝑉 ∈ ((𝑈 + 1)...𝑉))
14 fveq2 5570 . . . . 5 (𝑤 = (𝑈 + 1) → (𝐹𝑤) = (𝐹‘(𝑈 + 1)))
1514breq2d 4055 . . . 4 (𝑤 = (𝑈 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
1615imbi2d 230 . . 3 (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))))
17 fveq2 5570 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1817breq2d 4055 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑘)))
1918imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑘))))
20 fveq2 5570 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
2120breq2d 4055 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
23 fveq2 5570 . . . . 5 (𝑤 = 𝑉 → (𝐹𝑤) = (𝐹𝑉))
2423breq2d 4055 . . . 4 (𝑤 = 𝑉 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑉)))
2524imbi2d 230 . . 3 (𝑤 = 𝑉 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑉))))
26 nninfdclemf.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
27 nninfdclemf.dc . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
28 nninfdclemf.nb . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
29 nninfdclemf.j . . . . 5 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
30 nninfdclemf.f . . . . 5 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
3126, 27, 28, 29, 30, 1nninfdclemp1 12740 . . . 4 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
3231a1i 9 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
3326ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐴 ⊆ ℕ)
3426, 27, 28, 29, 30nninfdclemf 12739 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝐴)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐹:ℕ⟶𝐴)
361ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑈 ∈ ℕ)
3735, 36ffvelcdmd 5710 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ 𝐴)
3833, 37sseldd 3193 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℕ)
3938nnred 9031 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℝ)
40 elfzoelz 10251 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
42 1red 8069 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ∈ ℝ)
432nnred 9031 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 1) ∈ ℝ)
4443ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ∈ ℝ)
4541zred 9477 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℝ)
462nnge1d 9061 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑈 + 1))
4746ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ (𝑈 + 1))
48 elfzole1 10260 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘)
4948ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ≤ 𝑘)
5042, 44, 45, 47, 49letrd 8178 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ 𝑘)
51 elnnz1 9377 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
5241, 50, 51sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℕ)
5335, 52ffvelcdmd 5710 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
5433, 53sseldd 3193 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℕ)
5554nnred 9031 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5652peano2nnd 9033 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑘 + 1) ∈ ℕ)
5735, 56ffvelcdmd 5710 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴)
5833, 57sseldd 3193 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
5958nnred 9031 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
60 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹𝑘))
6127ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
6228ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6329ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐽𝐴 ∧ 1 < 𝐽))
6433, 61, 62, 63, 30, 52nninfdclemp1 12740 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6539, 55, 59, 60, 64lttrd 8180 . . . . . 6 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))
6665ex 115 . . . . 5 ((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
6766expcom 116 . . . 4 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6867a2d 26 . . 3 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹𝑈) < (𝐹𝑘)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6916, 19, 22, 25, 32, 68fzind2 10349 . 2 (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹𝑈) < (𝐹𝑉)))
7013, 69mpcom 36 1 (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  wrex 2484  cin 3164  wss 3165   class class class wbr 4043  cmpt 4104  wf 5264  cfv 5268  (class class class)co 5934  cmpo 5936  infcinf 7067  cr 7906  1c1 7908   + caddc 7910   < clt 8089  cle 8090  cn 9018  cz 9354  cuz 9630  ...cfz 10112  ..^cfzo 10246  seqcseq 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-sup 7068  df-inf 7069  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247  df-seqfrec 10574
This theorem is referenced by:  nninfdclemf1  12742
  Copyright terms: Public domain W3C validator