ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt GIF version

Theorem nninfdclemlt 12611
Description: Lemma for nninfdc 12613. The function from nninfdclemf 12609 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemlt.u (𝜑𝑈 ∈ ℕ)
nninfdclemlt.v (𝜑𝑉 ∈ ℕ)
nninfdclemlt.lt (𝜑𝑈 < 𝑉)
Assertion
Ref Expression
nninfdclemlt (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)

Proof of Theorem nninfdclemlt
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6 (𝜑𝑈 ∈ ℕ)
21peano2nnd 8999 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
32nnzd 9441 . . . 4 (𝜑 → (𝑈 + 1) ∈ ℤ)
4 nninfdclemlt.v . . . . 5 (𝜑𝑉 ∈ ℕ)
54nnzd 9441 . . . 4 (𝜑𝑉 ∈ ℤ)
6 nninfdclemlt.lt . . . . 5 (𝜑𝑈 < 𝑉)
7 nnltp1le 9380 . . . . . 6 ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
81, 4, 7syl2anc 411 . . . . 5 (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
96, 8mpbid 147 . . . 4 (𝜑 → (𝑈 + 1) ≤ 𝑉)
10 eluz2 9601 . . . 4 (𝑉 ∈ (ℤ‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉))
113, 5, 9, 10syl3anbrc 1183 . . 3 (𝜑𝑉 ∈ (ℤ‘(𝑈 + 1)))
12 eluzfz2 10101 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉))
1311, 12syl 14 . 2 (𝜑𝑉 ∈ ((𝑈 + 1)...𝑉))
14 fveq2 5555 . . . . 5 (𝑤 = (𝑈 + 1) → (𝐹𝑤) = (𝐹‘(𝑈 + 1)))
1514breq2d 4042 . . . 4 (𝑤 = (𝑈 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
1615imbi2d 230 . . 3 (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))))
17 fveq2 5555 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1817breq2d 4042 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑘)))
1918imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑘))))
20 fveq2 5555 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
2120breq2d 4042 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
23 fveq2 5555 . . . . 5 (𝑤 = 𝑉 → (𝐹𝑤) = (𝐹𝑉))
2423breq2d 4042 . . . 4 (𝑤 = 𝑉 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑉)))
2524imbi2d 230 . . 3 (𝑤 = 𝑉 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑉))))
26 nninfdclemf.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
27 nninfdclemf.dc . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
28 nninfdclemf.nb . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
29 nninfdclemf.j . . . . 5 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
30 nninfdclemf.f . . . . 5 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
3126, 27, 28, 29, 30, 1nninfdclemp1 12610 . . . 4 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
3231a1i 9 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
3326ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐴 ⊆ ℕ)
3426, 27, 28, 29, 30nninfdclemf 12609 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝐴)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐹:ℕ⟶𝐴)
361ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑈 ∈ ℕ)
3735, 36ffvelcdmd 5695 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ 𝐴)
3833, 37sseldd 3181 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℕ)
3938nnred 8997 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℝ)
40 elfzoelz 10216 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
42 1red 8036 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ∈ ℝ)
432nnred 8997 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 1) ∈ ℝ)
4443ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ∈ ℝ)
4541zred 9442 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℝ)
462nnge1d 9027 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑈 + 1))
4746ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ (𝑈 + 1))
48 elfzole1 10225 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘)
4948ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ≤ 𝑘)
5042, 44, 45, 47, 49letrd 8145 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ 𝑘)
51 elnnz1 9343 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
5241, 50, 51sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℕ)
5335, 52ffvelcdmd 5695 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
5433, 53sseldd 3181 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℕ)
5554nnred 8997 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5652peano2nnd 8999 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑘 + 1) ∈ ℕ)
5735, 56ffvelcdmd 5695 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴)
5833, 57sseldd 3181 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
5958nnred 8997 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
60 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹𝑘))
6127ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
6228ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6329ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐽𝐴 ∧ 1 < 𝐽))
6433, 61, 62, 63, 30, 52nninfdclemp1 12610 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6539, 55, 59, 60, 64lttrd 8147 . . . . . 6 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))
6665ex 115 . . . . 5 ((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
6766expcom 116 . . . 4 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6867a2d 26 . . 3 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹𝑈) < (𝐹𝑘)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6916, 19, 22, 25, 32, 68fzind2 10309 . 2 (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹𝑈) < (𝐹𝑉)))
7013, 69mpcom 36 1 (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cin 3153  wss 3154   class class class wbr 4030  cmpt 4091  wf 5251  cfv 5255  (class class class)co 5919  cmpo 5921  infcinf 7044  cr 7873  1c1 7875   + caddc 7877   < clt 8056  cle 8057  cn 8984  cz 9320  cuz 9595  ...cfz 10077  ..^cfzo 10211  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078  df-fzo 10212  df-seqfrec 10522
This theorem is referenced by:  nninfdclemf1  12612
  Copyright terms: Public domain W3C validator