| Step | Hyp | Ref
 | Expression | 
| 1 |   | nninfdclemlt.u | 
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℕ) | 
| 2 | 1 | peano2nnd 9005 | 
. . . . 5
⊢ (𝜑 → (𝑈 + 1) ∈ ℕ) | 
| 3 | 2 | nnzd 9447 | 
. . . 4
⊢ (𝜑 → (𝑈 + 1) ∈ ℤ) | 
| 4 |   | nninfdclemlt.v | 
. . . . 5
⊢ (𝜑 → 𝑉 ∈ ℕ) | 
| 5 | 4 | nnzd 9447 | 
. . . 4
⊢ (𝜑 → 𝑉 ∈ ℤ) | 
| 6 |   | nninfdclemlt.lt | 
. . . . 5
⊢ (𝜑 → 𝑈 < 𝑉) | 
| 7 |   | nnltp1le 9386 | 
. . . . . 6
⊢ ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉)) | 
| 8 | 1, 4, 7 | syl2anc 411 | 
. . . . 5
⊢ (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉)) | 
| 9 | 6, 8 | mpbid 147 | 
. . . 4
⊢ (𝜑 → (𝑈 + 1) ≤ 𝑉) | 
| 10 |   | eluz2 9607 | 
. . . 4
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉)) | 
| 11 | 3, 5, 9, 10 | syl3anbrc 1183 | 
. . 3
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘(𝑈 + 1))) | 
| 12 |   | eluzfz2 10107 | 
. . 3
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉)) | 
| 13 | 11, 12 | syl 14 | 
. 2
⊢ (𝜑 → 𝑉 ∈ ((𝑈 + 1)...𝑉)) | 
| 14 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = (𝑈 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑈 + 1))) | 
| 15 | 14 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = (𝑈 + 1) → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘(𝑈 + 1)))) | 
| 16 | 15 | imbi2d 230 | 
. . 3
⊢ (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))))) | 
| 17 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) | 
| 18 | 17 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘𝑘))) | 
| 19 | 18 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑘)))) | 
| 20 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) | 
| 21 | 20 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘(𝑘 + 1)))) | 
| 22 | 21 | imbi2d 230 | 
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) | 
| 23 |   | fveq2 5558 | 
. . . . 5
⊢ (𝑤 = 𝑉 → (𝐹‘𝑤) = (𝐹‘𝑉)) | 
| 24 | 23 | breq2d 4045 | 
. . . 4
⊢ (𝑤 = 𝑉 → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘𝑉))) | 
| 25 | 24 | imbi2d 230 | 
. . 3
⊢ (𝑤 = 𝑉 → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)))) | 
| 26 |   | nninfdclemf.a | 
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℕ) | 
| 27 |   | nninfdclemf.dc | 
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | 
| 28 |   | nninfdclemf.nb | 
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | 
| 29 |   | nninfdclemf.j | 
. . . . 5
⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | 
| 30 |   | nninfdclemf.f | 
. . . . 5
⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) | 
| 31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 12667 | 
. . . 4
⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))) | 
| 32 | 31 | a1i 9 | 
. . 3
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) → (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1)))) | 
| 33 | 26 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝐴 ⊆ ℕ) | 
| 34 | 26, 27, 28, 29, 30 | nninfdclemf 12666 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶𝐴) | 
| 35 | 34 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝐹:ℕ⟶𝐴) | 
| 36 | 1 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑈 ∈ ℕ) | 
| 37 | 35, 36 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ 𝐴) | 
| 38 | 33, 37 | sseldd 3184 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ ℕ) | 
| 39 | 38 | nnred 9003 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ ℝ) | 
| 40 |   | elfzoelz 10222 | 
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ) | 
| 41 | 40 | ad2antlr 489 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℤ) | 
| 42 |   | 1red 8041 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ∈ ℝ) | 
| 43 | 2 | nnred 9003 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 + 1) ∈ ℝ) | 
| 44 | 43 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑈 + 1) ∈ ℝ) | 
| 45 | 41 | zred 9448 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℝ) | 
| 46 | 2 | nnge1d 9033 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ (𝑈 + 1)) | 
| 47 | 46 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ≤ (𝑈 + 1)) | 
| 48 |   | elfzole1 10231 | 
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘) | 
| 49 | 48 | ad2antlr 489 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑈 + 1) ≤ 𝑘) | 
| 50 | 42, 44, 45, 47, 49 | letrd 8150 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ≤ 𝑘) | 
| 51 |   | elnnz1 9349 | 
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) | 
| 52 | 41, 50, 51 | sylanbrc 417 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℕ) | 
| 53 | 35, 52 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ 𝐴) | 
| 54 | 33, 53 | sseldd 3184 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ ℕ) | 
| 55 | 54 | nnred 9003 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ ℝ) | 
| 56 | 52 | peano2nnd 9005 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑘 + 1) ∈ ℕ) | 
| 57 | 35, 56 | ffvelcdmd 5698 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴) | 
| 58 | 33, 57 | sseldd 3184 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ) | 
| 59 | 58 | nnred 9003 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ) | 
| 60 |   | simpr 110 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) < (𝐹‘𝑘)) | 
| 61 | 27 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) | 
| 62 | 28 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) | 
| 63 | 29 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) | 
| 64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 12667 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) | 
| 65 | 39, 55, 59, 60, 64 | lttrd 8152 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))) | 
| 66 | 65 | ex 115 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹‘𝑈) < (𝐹‘𝑘) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1)))) | 
| 67 | 66 | expcom 116 | 
. . . 4
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹‘𝑈) < (𝐹‘𝑘) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) | 
| 68 | 67 | a2d 26 | 
. . 3
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) | 
| 69 | 16, 19, 22, 25, 32, 68 | fzind2 10315 | 
. 2
⊢ (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉))) | 
| 70 | 13, 69 | mpcom 36 | 
1
⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)) |