ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt GIF version

Theorem nninfdclemlt 12668
Description: Lemma for nninfdc 12670. The function from nninfdclemf 12666 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemlt.u (𝜑𝑈 ∈ ℕ)
nninfdclemlt.v (𝜑𝑉 ∈ ℕ)
nninfdclemlt.lt (𝜑𝑈 < 𝑉)
Assertion
Ref Expression
nninfdclemlt (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)

Proof of Theorem nninfdclemlt
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6 (𝜑𝑈 ∈ ℕ)
21peano2nnd 9005 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
32nnzd 9447 . . . 4 (𝜑 → (𝑈 + 1) ∈ ℤ)
4 nninfdclemlt.v . . . . 5 (𝜑𝑉 ∈ ℕ)
54nnzd 9447 . . . 4 (𝜑𝑉 ∈ ℤ)
6 nninfdclemlt.lt . . . . 5 (𝜑𝑈 < 𝑉)
7 nnltp1le 9386 . . . . . 6 ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
81, 4, 7syl2anc 411 . . . . 5 (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
96, 8mpbid 147 . . . 4 (𝜑 → (𝑈 + 1) ≤ 𝑉)
10 eluz2 9607 . . . 4 (𝑉 ∈ (ℤ‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉))
113, 5, 9, 10syl3anbrc 1183 . . 3 (𝜑𝑉 ∈ (ℤ‘(𝑈 + 1)))
12 eluzfz2 10107 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉))
1311, 12syl 14 . 2 (𝜑𝑉 ∈ ((𝑈 + 1)...𝑉))
14 fveq2 5558 . . . . 5 (𝑤 = (𝑈 + 1) → (𝐹𝑤) = (𝐹‘(𝑈 + 1)))
1514breq2d 4045 . . . 4 (𝑤 = (𝑈 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
1615imbi2d 230 . . 3 (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))))
17 fveq2 5558 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1817breq2d 4045 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑘)))
1918imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑘))))
20 fveq2 5558 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
2120breq2d 4045 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
23 fveq2 5558 . . . . 5 (𝑤 = 𝑉 → (𝐹𝑤) = (𝐹𝑉))
2423breq2d 4045 . . . 4 (𝑤 = 𝑉 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑉)))
2524imbi2d 230 . . 3 (𝑤 = 𝑉 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑉))))
26 nninfdclemf.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
27 nninfdclemf.dc . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
28 nninfdclemf.nb . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
29 nninfdclemf.j . . . . 5 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
30 nninfdclemf.f . . . . 5 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
3126, 27, 28, 29, 30, 1nninfdclemp1 12667 . . . 4 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
3231a1i 9 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
3326ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐴 ⊆ ℕ)
3426, 27, 28, 29, 30nninfdclemf 12666 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝐴)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐹:ℕ⟶𝐴)
361ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑈 ∈ ℕ)
3735, 36ffvelcdmd 5698 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ 𝐴)
3833, 37sseldd 3184 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℕ)
3938nnred 9003 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℝ)
40 elfzoelz 10222 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
42 1red 8041 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ∈ ℝ)
432nnred 9003 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 1) ∈ ℝ)
4443ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ∈ ℝ)
4541zred 9448 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℝ)
462nnge1d 9033 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑈 + 1))
4746ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ (𝑈 + 1))
48 elfzole1 10231 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘)
4948ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ≤ 𝑘)
5042, 44, 45, 47, 49letrd 8150 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ 𝑘)
51 elnnz1 9349 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
5241, 50, 51sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℕ)
5335, 52ffvelcdmd 5698 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
5433, 53sseldd 3184 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℕ)
5554nnred 9003 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5652peano2nnd 9005 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑘 + 1) ∈ ℕ)
5735, 56ffvelcdmd 5698 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴)
5833, 57sseldd 3184 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
5958nnred 9003 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
60 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹𝑘))
6127ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
6228ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6329ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐽𝐴 ∧ 1 < 𝐽))
6433, 61, 62, 63, 30, 52nninfdclemp1 12667 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6539, 55, 59, 60, 64lttrd 8152 . . . . . 6 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))
6665ex 115 . . . . 5 ((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
6766expcom 116 . . . 4 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6867a2d 26 . . 3 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹𝑈) < (𝐹𝑘)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6916, 19, 22, 25, 32, 68fzind2 10315 . 2 (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹𝑈) < (𝐹𝑉)))
7013, 69mpcom 36 1 (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wral 2475  wrex 2476  cin 3156  wss 3157   class class class wbr 4033  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  infcinf 7049  cr 7878  1c1 7880   + caddc 7882   < clt 8061  cle 8062  cn 8990  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by:  nninfdclemf1  12669
  Copyright terms: Public domain W3C validator