Step | Hyp | Ref
| Expression |
1 | | nninfdclemlt.u |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ ℕ) |
2 | 1 | peano2nnd 8868 |
. . . . 5
⊢ (𝜑 → (𝑈 + 1) ∈ ℕ) |
3 | 2 | nnzd 9308 |
. . . 4
⊢ (𝜑 → (𝑈 + 1) ∈ ℤ) |
4 | | nninfdclemlt.v |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ ℕ) |
5 | 4 | nnzd 9308 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ ℤ) |
6 | | nninfdclemlt.lt |
. . . . 5
⊢ (𝜑 → 𝑈 < 𝑉) |
7 | | nnltp1le 9247 |
. . . . . 6
⊢ ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉)) |
8 | 1, 4, 7 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉)) |
9 | 6, 8 | mpbid 146 |
. . . 4
⊢ (𝜑 → (𝑈 + 1) ≤ 𝑉) |
10 | | eluz2 9468 |
. . . 4
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉)) |
11 | 3, 5, 9, 10 | syl3anbrc 1171 |
. . 3
⊢ (𝜑 → 𝑉 ∈ (ℤ≥‘(𝑈 + 1))) |
12 | | eluzfz2 9963 |
. . 3
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉)) |
13 | 11, 12 | syl 14 |
. 2
⊢ (𝜑 → 𝑉 ∈ ((𝑈 + 1)...𝑉)) |
14 | | fveq2 5485 |
. . . . 5
⊢ (𝑤 = (𝑈 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑈 + 1))) |
15 | 14 | breq2d 3993 |
. . . 4
⊢ (𝑤 = (𝑈 + 1) → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘(𝑈 + 1)))) |
16 | 15 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))))) |
17 | | fveq2 5485 |
. . . . 5
⊢ (𝑤 = 𝑘 → (𝐹‘𝑤) = (𝐹‘𝑘)) |
18 | 17 | breq2d 3993 |
. . . 4
⊢ (𝑤 = 𝑘 → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘𝑘))) |
19 | 18 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑘 → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑘)))) |
20 | | fveq2 5485 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → (𝐹‘𝑤) = (𝐹‘(𝑘 + 1))) |
21 | 20 | breq2d 3993 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘(𝑘 + 1)))) |
22 | 21 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) |
23 | | fveq2 5485 |
. . . . 5
⊢ (𝑤 = 𝑉 → (𝐹‘𝑤) = (𝐹‘𝑉)) |
24 | 23 | breq2d 3993 |
. . . 4
⊢ (𝑤 = 𝑉 → ((𝐹‘𝑈) < (𝐹‘𝑤) ↔ (𝐹‘𝑈) < (𝐹‘𝑉))) |
25 | 24 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑉 → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑤)) ↔ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)))) |
26 | | nninfdclemf.a |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
27 | | nninfdclemf.dc |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
28 | | nninfdclemf.nb |
. . . . 5
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
29 | | nninfdclemf.j |
. . . . 5
⊢ (𝜑 → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
30 | | nninfdclemf.f |
. . . . 5
⊢ 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩
(ℤ≥‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽)) |
31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 12379 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1))) |
32 | 31 | a1i 9 |
. . 3
⊢ (𝑉 ∈
(ℤ≥‘(𝑈 + 1)) → (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑈 + 1)))) |
33 | 26 | ad2antrr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝐴 ⊆ ℕ) |
34 | 26, 27, 28, 29, 30 | nninfdclemf 12378 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶𝐴) |
35 | 34 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝐹:ℕ⟶𝐴) |
36 | 1 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑈 ∈ ℕ) |
37 | 35, 36 | ffvelrnd 5620 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ 𝐴) |
38 | 33, 37 | sseldd 3142 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ ℕ) |
39 | 38 | nnred 8866 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) ∈ ℝ) |
40 | | elfzoelz 10078 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ) |
41 | 40 | ad2antlr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℤ) |
42 | | 1red 7910 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ∈ ℝ) |
43 | 2 | nnred 8866 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑈 + 1) ∈ ℝ) |
44 | 43 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑈 + 1) ∈ ℝ) |
45 | 41 | zred 9309 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℝ) |
46 | 2 | nnge1d 8896 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ≤ (𝑈 + 1)) |
47 | 46 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ≤ (𝑈 + 1)) |
48 | | elfzole1 10086 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘) |
49 | 48 | ad2antlr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑈 + 1) ≤ 𝑘) |
50 | 42, 44, 45, 47, 49 | letrd 8018 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 1 ≤ 𝑘) |
51 | | elnnz1 9210 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤
𝑘)) |
52 | 41, 50, 51 | sylanbrc 414 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → 𝑘 ∈ ℕ) |
53 | 35, 52 | ffvelrnd 5620 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ 𝐴) |
54 | 33, 53 | sseldd 3142 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ ℕ) |
55 | 54 | nnred 8866 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) ∈ ℝ) |
56 | 52 | peano2nnd 8868 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝑘 + 1) ∈ ℕ) |
57 | 35, 56 | ffvelrnd 5620 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴) |
58 | 33, 57 | sseldd 3142 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ) |
59 | 58 | nnred 8866 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ) |
60 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) < (𝐹‘𝑘)) |
61 | 27 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) |
62 | 28 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) |
63 | 29 | ad2antrr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐽 ∈ 𝐴 ∧ 1 < 𝐽)) |
64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 12379 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑘) < (𝐹‘(𝑘 + 1))) |
65 | 39, 55, 59, 60, 64 | lttrd 8020 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))) |
66 | 65 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹‘𝑈) < (𝐹‘𝑘) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1)))) |
67 | 66 | expcom 115 |
. . . 4
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹‘𝑈) < (𝐹‘𝑘) → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) |
68 | 67 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹‘𝑈) < (𝐹‘𝑘)) → (𝜑 → (𝐹‘𝑈) < (𝐹‘(𝑘 + 1))))) |
69 | 16, 19, 22, 25, 32, 68 | fzind2 10170 |
. 2
⊢ (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉))) |
70 | 13, 69 | mpcom 36 |
1
⊢ (𝜑 → (𝐹‘𝑈) < (𝐹‘𝑉)) |