ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt GIF version

Theorem nninfdclemlt 12442
Description: Lemma for nninfdc 12444. The function from nninfdclemf 12440 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemlt.u (𝜑𝑈 ∈ ℕ)
nninfdclemlt.v (𝜑𝑉 ∈ ℕ)
nninfdclemlt.lt (𝜑𝑈 < 𝑉)
Assertion
Ref Expression
nninfdclemlt (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)

Proof of Theorem nninfdclemlt
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6 (𝜑𝑈 ∈ ℕ)
21peano2nnd 8928 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
32nnzd 9368 . . . 4 (𝜑 → (𝑈 + 1) ∈ ℤ)
4 nninfdclemlt.v . . . . 5 (𝜑𝑉 ∈ ℕ)
54nnzd 9368 . . . 4 (𝜑𝑉 ∈ ℤ)
6 nninfdclemlt.lt . . . . 5 (𝜑𝑈 < 𝑉)
7 nnltp1le 9307 . . . . . 6 ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
81, 4, 7syl2anc 411 . . . . 5 (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
96, 8mpbid 147 . . . 4 (𝜑 → (𝑈 + 1) ≤ 𝑉)
10 eluz2 9528 . . . 4 (𝑉 ∈ (ℤ‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉))
113, 5, 9, 10syl3anbrc 1181 . . 3 (𝜑𝑉 ∈ (ℤ‘(𝑈 + 1)))
12 eluzfz2 10025 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉))
1311, 12syl 14 . 2 (𝜑𝑉 ∈ ((𝑈 + 1)...𝑉))
14 fveq2 5512 . . . . 5 (𝑤 = (𝑈 + 1) → (𝐹𝑤) = (𝐹‘(𝑈 + 1)))
1514breq2d 4013 . . . 4 (𝑤 = (𝑈 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
1615imbi2d 230 . . 3 (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))))
17 fveq2 5512 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1817breq2d 4013 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑘)))
1918imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑘))))
20 fveq2 5512 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
2120breq2d 4013 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
23 fveq2 5512 . . . . 5 (𝑤 = 𝑉 → (𝐹𝑤) = (𝐹𝑉))
2423breq2d 4013 . . . 4 (𝑤 = 𝑉 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑉)))
2524imbi2d 230 . . 3 (𝑤 = 𝑉 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑉))))
26 nninfdclemf.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
27 nninfdclemf.dc . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
28 nninfdclemf.nb . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
29 nninfdclemf.j . . . . 5 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
30 nninfdclemf.f . . . . 5 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
3126, 27, 28, 29, 30, 1nninfdclemp1 12441 . . . 4 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
3231a1i 9 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
3326ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐴 ⊆ ℕ)
3426, 27, 28, 29, 30nninfdclemf 12440 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝐴)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐹:ℕ⟶𝐴)
361ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑈 ∈ ℕ)
3735, 36ffvelcdmd 5649 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ 𝐴)
3833, 37sseldd 3156 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℕ)
3938nnred 8926 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℝ)
40 elfzoelz 10140 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
42 1red 7967 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ∈ ℝ)
432nnred 8926 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 1) ∈ ℝ)
4443ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ∈ ℝ)
4541zred 9369 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℝ)
462nnge1d 8956 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑈 + 1))
4746ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ (𝑈 + 1))
48 elfzole1 10148 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘)
4948ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ≤ 𝑘)
5042, 44, 45, 47, 49letrd 8075 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ 𝑘)
51 elnnz1 9270 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
5241, 50, 51sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℕ)
5335, 52ffvelcdmd 5649 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
5433, 53sseldd 3156 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℕ)
5554nnred 8926 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5652peano2nnd 8928 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑘 + 1) ∈ ℕ)
5735, 56ffvelcdmd 5649 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴)
5833, 57sseldd 3156 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
5958nnred 8926 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
60 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹𝑘))
6127ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
6228ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6329ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐽𝐴 ∧ 1 < 𝐽))
6433, 61, 62, 63, 30, 52nninfdclemp1 12441 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6539, 55, 59, 60, 64lttrd 8077 . . . . . 6 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))
6665ex 115 . . . . 5 ((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
6766expcom 116 . . . 4 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6867a2d 26 . . 3 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹𝑈) < (𝐹𝑘)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6916, 19, 22, 25, 32, 68fzind2 10232 . 2 (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹𝑈) < (𝐹𝑉)))
7013, 69mpcom 36 1 (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3128  wss 3129   class class class wbr 4001  cmpt 4062  wf 5209  cfv 5213  (class class class)co 5870  cmpo 5872  infcinf 6977  cr 7805  1c1 7807   + caddc 7809   < clt 7986  cle 7987  cn 8913  cz 9247  cuz 9522  ...cfz 10002  ..^cfzo 10135  seqcseq 10438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4116  ax-sep 4119  ax-nul 4127  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-iinf 4585  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-addcom 7906  ax-addass 7908  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-0id 7914  ax-rnegex 7915  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-iun 3887  df-br 4002  df-opab 4063  df-mpt 4064  df-tr 4100  df-id 4291  df-po 4294  df-iso 4295  df-iord 4364  df-on 4366  df-ilim 4367  df-suc 4369  df-iom 4588  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-f1 5218  df-fo 5219  df-f1o 5220  df-fv 5221  df-isom 5222  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-1st 6136  df-2nd 6137  df-recs 6301  df-frec 6387  df-sup 6978  df-inf 6979  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-inn 8914  df-n0 9171  df-z 9248  df-uz 9523  df-fz 10003  df-fzo 10136  df-seqfrec 10439
This theorem is referenced by:  nninfdclemf1  12443
  Copyright terms: Public domain W3C validator