ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt GIF version

Theorem nninfdclemlt 12452
Description: Lemma for nninfdc 12454. The function from nninfdclemf 12450 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a (𝜑𝐴 ⊆ ℕ)
nninfdclemf.dc (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
nninfdclemf.nb (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
nninfdclemf.j (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
nninfdclemf.f 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
nninfdclemlt.u (𝜑𝑈 ∈ ℕ)
nninfdclemlt.v (𝜑𝑉 ∈ ℕ)
nninfdclemlt.lt (𝜑𝑈 < 𝑉)
Assertion
Ref Expression
nninfdclemlt (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Distinct variable groups:   𝐴,𝑚,𝑛   𝑥,𝐴   𝑦,𝐴,𝑧   𝑚,𝐹,𝑛   𝑥,𝐹   𝑦,𝐹,𝑧   𝑖,𝐽   𝑈,𝑖   𝑈,𝑚,𝑛   𝑥,𝑈   𝑦,𝑈,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)   𝐴(𝑖)   𝐹(𝑖)   𝐽(𝑥,𝑚,𝑛)   𝑉(𝑥,𝑦,𝑧,𝑖,𝑚,𝑛)

Proof of Theorem nninfdclemlt
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6 (𝜑𝑈 ∈ ℕ)
21peano2nnd 8934 . . . . 5 (𝜑 → (𝑈 + 1) ∈ ℕ)
32nnzd 9374 . . . 4 (𝜑 → (𝑈 + 1) ∈ ℤ)
4 nninfdclemlt.v . . . . 5 (𝜑𝑉 ∈ ℕ)
54nnzd 9374 . . . 4 (𝜑𝑉 ∈ ℤ)
6 nninfdclemlt.lt . . . . 5 (𝜑𝑈 < 𝑉)
7 nnltp1le 9313 . . . . . 6 ((𝑈 ∈ ℕ ∧ 𝑉 ∈ ℕ) → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
81, 4, 7syl2anc 411 . . . . 5 (𝜑 → (𝑈 < 𝑉 ↔ (𝑈 + 1) ≤ 𝑉))
96, 8mpbid 147 . . . 4 (𝜑 → (𝑈 + 1) ≤ 𝑉)
10 eluz2 9534 . . . 4 (𝑉 ∈ (ℤ‘(𝑈 + 1)) ↔ ((𝑈 + 1) ∈ ℤ ∧ 𝑉 ∈ ℤ ∧ (𝑈 + 1) ≤ 𝑉))
113, 5, 9, 10syl3anbrc 1181 . . 3 (𝜑𝑉 ∈ (ℤ‘(𝑈 + 1)))
12 eluzfz2 10032 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → 𝑉 ∈ ((𝑈 + 1)...𝑉))
1311, 12syl 14 . 2 (𝜑𝑉 ∈ ((𝑈 + 1)...𝑉))
14 fveq2 5516 . . . . 5 (𝑤 = (𝑈 + 1) → (𝐹𝑤) = (𝐹‘(𝑈 + 1)))
1514breq2d 4016 . . . 4 (𝑤 = (𝑈 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
1615imbi2d 230 . . 3 (𝑤 = (𝑈 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))))
17 fveq2 5516 . . . . 5 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1817breq2d 4016 . . . 4 (𝑤 = 𝑘 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑘)))
1918imbi2d 230 . . 3 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑘))))
20 fveq2 5516 . . . . 5 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
2120breq2d 4016 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
2221imbi2d 230 . . 3 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
23 fveq2 5516 . . . . 5 (𝑤 = 𝑉 → (𝐹𝑤) = (𝐹𝑉))
2423breq2d 4016 . . . 4 (𝑤 = 𝑉 → ((𝐹𝑈) < (𝐹𝑤) ↔ (𝐹𝑈) < (𝐹𝑉)))
2524imbi2d 230 . . 3 (𝑤 = 𝑉 → ((𝜑 → (𝐹𝑈) < (𝐹𝑤)) ↔ (𝜑 → (𝐹𝑈) < (𝐹𝑉))))
26 nninfdclemf.a . . . . 5 (𝜑𝐴 ⊆ ℕ)
27 nninfdclemf.dc . . . . 5 (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
28 nninfdclemf.nb . . . . 5 (𝜑 → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
29 nninfdclemf.j . . . . 5 (𝜑 → (𝐽𝐴 ∧ 1 < 𝐽))
30 nninfdclemf.f . . . . 5 𝐹 = seq1((𝑦 ∈ ℕ, 𝑧 ∈ ℕ ↦ inf((𝐴 ∩ (ℤ‘(𝑦 + 1))), ℝ, < )), (𝑖 ∈ ℕ ↦ 𝐽))
3126, 27, 28, 29, 30, 1nninfdclemp1 12451 . . . 4 (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1)))
3231a1i 9 . . 3 (𝑉 ∈ (ℤ‘(𝑈 + 1)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑈 + 1))))
3326ad2antrr 488 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐴 ⊆ ℕ)
3426, 27, 28, 29, 30nninfdclemf 12450 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶𝐴)
3534ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝐹:ℕ⟶𝐴)
361ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑈 ∈ ℕ)
3735, 36ffvelcdmd 5653 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ 𝐴)
3833, 37sseldd 3157 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℕ)
3938nnred 8932 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) ∈ ℝ)
40 elfzoelz 10147 . . . . . . . . . . . 12 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → 𝑘 ∈ ℤ)
4140ad2antlr 489 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℤ)
42 1red 7972 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ∈ ℝ)
432nnred 8932 . . . . . . . . . . . . 13 (𝜑 → (𝑈 + 1) ∈ ℝ)
4443ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ∈ ℝ)
4541zred 9375 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℝ)
462nnge1d 8962 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ (𝑈 + 1))
4746ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ (𝑈 + 1))
48 elfzole1 10155 . . . . . . . . . . . . 13 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝑈 + 1) ≤ 𝑘)
4948ad2antlr 489 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑈 + 1) ≤ 𝑘)
5042, 44, 45, 47, 49letrd 8081 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 1 ≤ 𝑘)
51 elnnz1 9276 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
5241, 50, 51sylanbrc 417 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → 𝑘 ∈ ℕ)
5335, 52ffvelcdmd 5653 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ 𝐴)
5433, 53sseldd 3157 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℕ)
5554nnred 8932 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) ∈ ℝ)
5652peano2nnd 8934 . . . . . . . . . 10 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝑘 + 1) ∈ ℕ)
5735, 56ffvelcdmd 5653 . . . . . . . . 9 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ 𝐴)
5833, 57sseldd 3157 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℕ)
5958nnred 8932 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
60 simpr 110 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹𝑘))
6127ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)
6228ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → ∀𝑚 ∈ ℕ ∃𝑛𝐴 𝑚 < 𝑛)
6329ad2antrr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐽𝐴 ∧ 1 < 𝐽))
6433, 61, 62, 63, 30, 52nninfdclemp1 12451 . . . . . . 7 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6539, 55, 59, 60, 64lttrd 8083 . . . . . 6 (((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) ∧ (𝐹𝑈) < (𝐹𝑘)) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))
6665ex 115 . . . . 5 ((𝜑𝑘 ∈ ((𝑈 + 1)..^𝑉)) → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1))))
6766expcom 116 . . . 4 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → (𝜑 → ((𝐹𝑈) < (𝐹𝑘) → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6867a2d 26 . . 3 (𝑘 ∈ ((𝑈 + 1)..^𝑉) → ((𝜑 → (𝐹𝑈) < (𝐹𝑘)) → (𝜑 → (𝐹𝑈) < (𝐹‘(𝑘 + 1)))))
6916, 19, 22, 25, 32, 68fzind2 10239 . 2 (𝑉 ∈ ((𝑈 + 1)...𝑉) → (𝜑 → (𝐹𝑈) < (𝐹𝑉)))
7013, 69mpcom 36 1 (𝜑 → (𝐹𝑈) < (𝐹𝑉))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  cin 3129  wss 3130   class class class wbr 4004  cmpt 4065  wf 5213  cfv 5217  (class class class)co 5875  cmpo 5877  infcinf 6982  cr 7810  1c1 7812   + caddc 7814   < clt 7992  cle 7993  cn 8919  cz 9253  cuz 9528  ...cfz 10008  ..^cfzo 10142  seqcseq 10445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-fz 10009  df-fzo 10143  df-seqfrec 10446
This theorem is referenced by:  nninfdclemf1  12453
  Copyright terms: Public domain W3C validator