ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle GIF version

Theorem cvgratnnlemabsle 11308
Description: Lemma for cvgratnn 11312. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemabsle (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀,𝑘   𝑖,𝑁   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
21nnzd 9184 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32peano2zd 9188 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
4 cvgratnn.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9347 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
73, 6fzfigd 10216 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
8 fveq2 5421 . . . . . . 7 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
98eleq1d 2208 . . . . . 6 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
10 cvgratnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
1110ralrimiva 2505 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1211adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
13 elfzelz 9818 . . . . . . . 8 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
1413adantl 275 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
15 0red 7779 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ∈ ℝ)
161peano2nnd 8747 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℕ)
1716adantr 274 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℕ)
1817nnred 8745 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
1914zred 9185 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
2016nngt0d 8776 . . . . . . . . 9 (𝜑 → 0 < (𝑀 + 1))
2120adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < (𝑀 + 1))
22 elfzle1 9819 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
2322adantl 275 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
2415, 18, 19, 21, 23ltletrd 8197 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝑖)
25 elnnz 9076 . . . . . . 7 (𝑖 ∈ ℕ ↔ (𝑖 ∈ ℤ ∧ 0 < 𝑖))
2614, 24, 25sylanbrc 413 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℕ)
279, 12, 26rspcdva 2794 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑖) ∈ ℂ)
287, 27fsumcl 11181 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) ∈ ℂ)
2928abscld 10965 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ∈ ℝ)
3027abscld 10965 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑖)) ∈ ℝ)
317, 30fsumrecl 11182 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)) ∈ ℝ)
32 fveq2 5421 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
3332eleq1d 2208 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3433, 11, 1rspcdva 2794 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3534adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑀) ∈ ℂ)
3635abscld 10965 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑀)) ∈ ℝ)
37 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3837adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
392adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℤ)
4014, 39zsubcld 9190 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
411adantr 274 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ)
4241nnred 8745 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
4342lep1d 8701 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
4442, 18, 19, 43, 23letrd 7898 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
4519, 42subge0d 8309 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (0 ≤ (𝑖𝑀) ↔ 𝑀𝑖))
4644, 45mpbird 166 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝑖𝑀))
47 elnn0z 9079 . . . . . . 7 ((𝑖𝑀) ∈ ℕ0 ↔ ((𝑖𝑀) ∈ ℤ ∧ 0 ≤ (𝑖𝑀)))
4840, 46, 47sylanbrc 413 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
4938, 48reexpcld 10453 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
5036, 49remulcld 7808 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))) ∈ ℝ)
517, 50fsumrecl 11182 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))) ∈ ℝ)
527, 27fsumabs 11246 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)))
53 cvgratnn.4 . . . . . 6 (𝜑𝐴 < 1)
5453adantr 274 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 < 1)
55 cvgratnn.gt0 . . . . . 6 (𝜑 → 0 < 𝐴)
5655adantr 274 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝐴)
5710adantlr 468 . . . . 5 (((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
58 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
5958adantlr 468 . . . . 5 (((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
60 eluz2 9344 . . . . . 6 (𝑖 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀𝑖))
6139, 14, 44, 60syl3anbrc 1165 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ (ℤ𝑀))
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11306 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
637, 30, 50, 62fsumle 11244 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
6429, 31, 51, 52, 63letrd 7898 . 2 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
6534abscld 10965 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
6665recnd 7806 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
6738recnd 7806 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
6867, 48expcld 10436 . . 3 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℂ)
697, 66, 68fsummulc2 11229 . 2 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
7064, 69breqtrrd 3956 1 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7630  cr 7631  0cc0 7632  1c1 7633   + caddc 7635   · cmul 7637   < clt 7812  cle 7813  cmin 7945  cn 8732  0cn0 8989  cz 9066  cuz 9338  ...cfz 9802  cexp 10304  abscabs 10781  Σcsu 11134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-ico 9689  df-fz 9803  df-fzo 9932  df-seqfrec 10231  df-exp 10305  df-ihash 10534  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-clim 11060  df-sumdc 11135
This theorem is referenced by:  cvgratnnlemrate  11311
  Copyright terms: Public domain W3C validator