Proof of Theorem cvgratnnlemabsle
| Step | Hyp | Ref
| Expression |
| 1 | | cvgratnn.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 2 | 1 | nnzd 9447 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | 2 | peano2zd 9451 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 4 | | cvgratnn.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | | eluzelz 9610 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 6 | 4, 5 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 7 | 3, 6 | fzfigd 10523 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
| 8 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
| 9 | 8 | eleq1d 2265 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
| 10 | | cvgratnn.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 11 | 10 | ralrimiva 2570 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 12 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 13 | | elfzelz 10100 |
. . . . . . . 8
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ) |
| 14 | 13 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ) |
| 15 | | 0red 8027 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ∈ ℝ) |
| 16 | 1 | peano2nnd 9005 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 17 | 16 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℕ) |
| 18 | 17 | nnred 9003 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ) |
| 19 | 14 | zred 9448 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ) |
| 20 | 16 | nngt0d 9034 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (𝑀 + 1)) |
| 21 | 20 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < (𝑀 + 1)) |
| 22 | | elfzle1 10102 |
. . . . . . . . 9
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖) |
| 23 | 22 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖) |
| 24 | 15, 18, 19, 21, 23 | ltletrd 8450 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝑖) |
| 25 | | elnnz 9336 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↔ (𝑖 ∈ ℤ ∧ 0 <
𝑖)) |
| 26 | 14, 24, 25 | sylanbrc 417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℕ) |
| 27 | 9, 12, 26 | rspcdva 2873 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑖) ∈ ℂ) |
| 28 | 7, 27 | fsumcl 11565 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖) ∈ ℂ) |
| 29 | 28 | abscld 11346 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ∈ ℝ) |
| 30 | 27 | abscld 11346 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑖)) ∈ ℝ) |
| 31 | 7, 30 | fsumrecl 11566 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖)) ∈ ℝ) |
| 32 | | fveq2 5558 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
| 33 | 32 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
| 34 | 33, 11, 1 | rspcdva 2873 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 35 | 34 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑀) ∈ ℂ) |
| 36 | 35 | abscld 11346 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
| 37 | | cvgratnn.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 38 | 37 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ) |
| 39 | 2 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℤ) |
| 40 | 14, 39 | zsubcld 9453 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈ ℤ) |
| 41 | 1 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
| 42 | 41 | nnred 9003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ) |
| 43 | 42 | lep1d 8958 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1)) |
| 44 | 42, 18, 19, 43, 23 | letrd 8150 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ 𝑖) |
| 45 | 19, 42 | subge0d 8562 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (0 ≤ (𝑖 − 𝑀) ↔ 𝑀 ≤ 𝑖)) |
| 46 | 44, 45 | mpbird 167 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝑖 − 𝑀)) |
| 47 | | elnn0z 9339 |
. . . . . . 7
⊢ ((𝑖 − 𝑀) ∈ ℕ0 ↔ ((𝑖 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑖 − 𝑀))) |
| 48 | 40, 46, 47 | sylanbrc 417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈
ℕ0) |
| 49 | 38, 48 | reexpcld 10782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈ ℝ) |
| 50 | 36, 49 | remulcld 8057 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀))) ∈ ℝ) |
| 51 | 7, 50 | fsumrecl 11566 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀))) ∈ ℝ) |
| 52 | 7, 27 | fsumabs 11630 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖))) |
| 53 | | cvgratnn.4 |
. . . . . 6
⊢ (𝜑 → 𝐴 < 1) |
| 54 | 53 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 < 1) |
| 55 | | cvgratnn.gt0 |
. . . . . 6
⊢ (𝜑 → 0 < 𝐴) |
| 56 | 55 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝐴) |
| 57 | 10 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 58 | | cvgratnn.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 59 | 58 | adantlr 477 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
| 60 | | eluz2 9607 |
. . . . . 6
⊢ (𝑖 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ≤ 𝑖)) |
| 61 | 39, 14, 44, 60 | syl3anbrc 1183 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 62 | 38, 54, 56, 57, 59, 41, 61 | cvgratnnlemmn 11690 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
| 63 | 7, 30, 50, 62 | fsumle 11628 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
| 64 | 29, 31, 51, 52, 63 | letrd 8150 |
. 2
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
| 65 | 34 | abscld 11346 |
. . . 4
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
| 66 | 65 | recnd 8055 |
. . 3
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℂ) |
| 67 | 38 | recnd 8055 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ) |
| 68 | 67, 48 | expcld 10765 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈ ℂ) |
| 69 | 7, 66, 68 | fsummulc2 11613 |
. 2
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
| 70 | 64, 69 | breqtrrd 4061 |
1
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |