ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle GIF version

Theorem cvgratnnlemabsle 11468
Description: Lemma for cvgratnn 11472. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemabsle (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀,𝑘   𝑖,𝑁   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
21nnzd 9312 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
32peano2zd 9316 . . . . . 6 (𝜑 → (𝑀 + 1) ∈ ℤ)
4 cvgratnn.n . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9475 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . . . . 6 (𝜑𝑁 ∈ ℤ)
73, 6fzfigd 10366 . . . . 5 (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin)
8 fveq2 5486 . . . . . . 7 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
98eleq1d 2235 . . . . . 6 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
10 cvgratnn.6 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
1110ralrimiva 2539 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1211adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
13 elfzelz 9960 . . . . . . . 8 (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ)
1413adantl 275 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ)
15 0red 7900 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ∈ ℝ)
161peano2nnd 8872 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ ℕ)
1716adantr 274 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℕ)
1817nnred 8870 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ)
1914zred 9313 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ)
2016nngt0d 8901 . . . . . . . . 9 (𝜑 → 0 < (𝑀 + 1))
2120adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < (𝑀 + 1))
22 elfzle1 9962 . . . . . . . . 9 (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖)
2322adantl 275 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖)
2415, 18, 19, 21, 23ltletrd 8321 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝑖)
25 elnnz 9201 . . . . . . 7 (𝑖 ∈ ℕ ↔ (𝑖 ∈ ℤ ∧ 0 < 𝑖))
2614, 24, 25sylanbrc 414 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℕ)
279, 12, 26rspcdva 2835 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑖) ∈ ℂ)
287, 27fsumcl 11341 . . . 4 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) ∈ ℂ)
2928abscld 11123 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ∈ ℝ)
3027abscld 11123 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑖)) ∈ ℝ)
317, 30fsumrecl 11342 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)) ∈ ℝ)
32 fveq2 5486 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
3332eleq1d 2235 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
3433, 11, 1rspcdva 2835 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℂ)
3534adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑀) ∈ ℂ)
3635abscld 11123 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑀)) ∈ ℝ)
37 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3837adantr 274 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ)
392adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℤ)
4014, 39zsubcld 9318 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℤ)
411adantr 274 . . . . . . . . . 10 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ)
4241nnred 8870 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ)
4342lep1d 8826 . . . . . . . . 9 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1))
4442, 18, 19, 43, 23letrd 8022 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀𝑖)
4519, 42subge0d 8433 . . . . . . . 8 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (0 ≤ (𝑖𝑀) ↔ 𝑀𝑖))
4644, 45mpbird 166 . . . . . . 7 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝑖𝑀))
47 elnn0z 9204 . . . . . . 7 ((𝑖𝑀) ∈ ℕ0 ↔ ((𝑖𝑀) ∈ ℤ ∧ 0 ≤ (𝑖𝑀)))
4840, 46, 47sylanbrc 414 . . . . . 6 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖𝑀) ∈ ℕ0)
4938, 48reexpcld 10605 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℝ)
5036, 49remulcld 7929 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → ((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))) ∈ ℝ)
517, 50fsumrecl 11342 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))) ∈ ℝ)
527, 27fsumabs 11406 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)))
53 cvgratnn.4 . . . . . 6 (𝜑𝐴 < 1)
5453adantr 274 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 < 1)
55 cvgratnn.gt0 . . . . . 6 (𝜑 → 0 < 𝐴)
5655adantr 274 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝐴)
5710adantlr 469 . . . . 5 (((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
58 cvgratnn.7 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
5958adantlr 469 . . . . 5 (((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
60 eluz2 9472 . . . . . 6 (𝑖 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀𝑖))
6139, 14, 44, 60syl3anbrc 1171 . . . . 5 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ (ℤ𝑀))
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11466 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
637, 30, 50, 62fsumle 11404 . . 3 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
6429, 31, 51, 52, 63letrd 8022 . 2 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
6534abscld 11123 . . . 4 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℝ)
6665recnd 7927 . . 3 (𝜑 → (abs‘(𝐹𝑀)) ∈ ℂ)
6738recnd 7927 . . . 4 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ)
6867, 48expcld 10588 . . 3 ((𝜑𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖𝑀)) ∈ ℂ)
697, 66, 68fsummulc2 11389 . 2 (𝜑 → ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹𝑀)) · (𝐴↑(𝑖𝑀))))
7064, 69breqtrrd 4010 1 (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖)) ≤ ((abs‘(𝐹𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069  cn 8857  0cn0 9114  cz 9191  cuz 9466  ...cfz 9944  cexp 10454  abscabs 10939  Σcsu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  cvgratnnlemrate  11471
  Copyright terms: Public domain W3C validator