Proof of Theorem cvgratnnlemabsle
Step | Hyp | Ref
| Expression |
1 | | cvgratnn.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | 1 | nnzd 9312 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 2 | peano2zd 9316 |
. . . . . 6
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
4 | | cvgratnn.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | | eluzelz 9475 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
6 | 4, 5 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | 3, 6 | fzfigd 10366 |
. . . . 5
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ∈ Fin) |
8 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
9 | 8 | eleq1d 2235 |
. . . . . 6
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
10 | | cvgratnn.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
11 | 10 | ralrimiva 2539 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
12 | 11 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
13 | | elfzelz 9960 |
. . . . . . . 8
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → 𝑖 ∈ ℤ) |
14 | 13 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℤ) |
15 | | 0red 7900 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ∈ ℝ) |
16 | 1 | peano2nnd 8872 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
17 | 16 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℕ) |
18 | 17 | nnred 8870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ∈ ℝ) |
19 | 14 | zred 9313 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℝ) |
20 | 16 | nngt0d 8901 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (𝑀 + 1)) |
21 | 20 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < (𝑀 + 1)) |
22 | | elfzle1 9962 |
. . . . . . . . 9
⊢ (𝑖 ∈ ((𝑀 + 1)...𝑁) → (𝑀 + 1) ≤ 𝑖) |
23 | 22 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑀 + 1) ≤ 𝑖) |
24 | 15, 18, 19, 21, 23 | ltletrd 8321 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝑖) |
25 | | elnnz 9201 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↔ (𝑖 ∈ ℤ ∧ 0 <
𝑖)) |
26 | 14, 24, 25 | sylanbrc 414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ ℕ) |
27 | 9, 12, 26 | rspcdva 2835 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑖) ∈ ℂ) |
28 | 7, 27 | fsumcl 11341 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖) ∈ ℂ) |
29 | 28 | abscld 11123 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ∈ ℝ) |
30 | 27 | abscld 11123 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑖)) ∈ ℝ) |
31 | 7, 30 | fsumrecl 11342 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖)) ∈ ℝ) |
32 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
33 | 32 | eleq1d 2235 |
. . . . . . . 8
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
34 | 33, 11, 1 | rspcdva 2835 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
35 | 34 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑀) ∈ ℂ) |
36 | 35 | abscld 11123 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
37 | | cvgratnn.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
38 | 37 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℝ) |
39 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℤ) |
40 | 14, 39 | zsubcld 9318 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈ ℤ) |
41 | 1 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℕ) |
42 | 41 | nnred 8870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ∈ ℝ) |
43 | 42 | lep1d 8826 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ (𝑀 + 1)) |
44 | 42, 18, 19, 43, 23 | letrd 8022 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑀 ≤ 𝑖) |
45 | 19, 42 | subge0d 8433 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (0 ≤ (𝑖 − 𝑀) ↔ 𝑀 ≤ 𝑖)) |
46 | 44, 45 | mpbird 166 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 ≤ (𝑖 − 𝑀)) |
47 | | elnn0z 9204 |
. . . . . . 7
⊢ ((𝑖 − 𝑀) ∈ ℕ0 ↔ ((𝑖 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝑖 − 𝑀))) |
48 | 40, 46, 47 | sylanbrc 414 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝑖 − 𝑀) ∈
ℕ0) |
49 | 38, 48 | reexpcld 10605 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈ ℝ) |
50 | 36, 49 | remulcld 7929 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀))) ∈ ℝ) |
51 | 7, 50 | fsumrecl 11342 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀))) ∈ ℝ) |
52 | 7, 27 | fsumabs 11406 |
. . 3
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖))) |
53 | | cvgratnn.4 |
. . . . . 6
⊢ (𝜑 → 𝐴 < 1) |
54 | 53 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 < 1) |
55 | | cvgratnn.gt0 |
. . . . . 6
⊢ (𝜑 → 0 < 𝐴) |
56 | 55 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 0 < 𝐴) |
57 | 10 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
58 | | cvgratnn.7 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
59 | 58 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) ∧ 𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹‘𝑘)))) |
60 | | eluz2 9472 |
. . . . . 6
⊢ (𝑖 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ≤ 𝑖)) |
61 | 39, 14, 44, 60 | syl3anbrc 1171 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
62 | 38, 54, 56, 57, 59, 41, 61 | cvgratnnlemmn 11466 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (abs‘(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
63 | 7, 30, 50, 62 | fsumle 11404 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(abs‘(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
64 | 29, 31, 51, 52, 63 | letrd 8022 |
. 2
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
65 | 34 | abscld 11123 |
. . . 4
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℝ) |
66 | 65 | recnd 7927 |
. . 3
⊢ (𝜑 → (abs‘(𝐹‘𝑀)) ∈ ℂ) |
67 | 38 | recnd 7927 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → 𝐴 ∈ ℂ) |
68 | 67, 48 | expcld 10588 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ((𝑀 + 1)...𝑁)) → (𝐴↑(𝑖 − 𝑀)) ∈ ℂ) |
69 | 7, 66, 68 | fsummulc2 11389 |
. 2
⊢ (𝜑 → ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)((abs‘(𝐹‘𝑀)) · (𝐴↑(𝑖 − 𝑀)))) |
70 | 64, 69 | breqtrrd 4010 |
1
⊢ (𝜑 → (abs‘Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) ≤ ((abs‘(𝐹‘𝑀)) · Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)))) |