ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rrgeq0 GIF version

Theorem rrgeq0 13831
Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgeq0 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))

Proof of Theorem rrgeq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgval.e . . . 4 𝐸 = (RLReg‘𝑅)
2 rrgval.b . . . 4 𝐵 = (Base‘𝑅)
3 rrgval.t . . . 4 · = (.r𝑅)
4 rrgval.z . . . 4 0 = (0g𝑅)
51, 2, 3, 4rrgeq0i 13830 . . 3 ((𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
653adant1 1017 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
7 simp1 999 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑅 ∈ Ring)
81, 2, 3, 4rrgval 13828 . . . . . 6 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
98ssrab3 3270 . . . . 5 𝐸𝐵
10 simp2 1000 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐸)
119, 10sselid 3182 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → 𝑋𝐵)
122, 3, 4ringrz 13610 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
137, 11, 12syl2anc 411 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑋 · 0 ) = 0 )
14 oveq2 5931 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
1514eqeq1d 2205 . . 3 (𝑌 = 0 → ((𝑋 · 𝑌) = 0 ↔ (𝑋 · 0 ) = 0 ))
1613, 15syl5ibrcom 157 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
176, 16impbid 129 1 ((𝑅 ∈ Ring ∧ 𝑋𝐸𝑌𝐵) → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  cfv 5259  (class class class)co 5923  Basecbs 12688  .rcmulr 12766  0gc0g 12937  Ringcrg 13562  RLRegcrlreg 13821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-pre-ltirr 7993  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-ltxr 8068  df-inn 8993  df-2 9051  df-3 9052  df-ndx 12691  df-slot 12692  df-base 12694  df-sets 12695  df-plusg 12778  df-mulr 12779  df-0g 12939  df-mgm 13009  df-sgrp 13055  df-mnd 13068  df-grp 13145  df-mgp 13487  df-ring 13564  df-rlreg 13824
This theorem is referenced by:  rrgnz  13834
  Copyright terms: Public domain W3C validator