| Step | Hyp | Ref
| Expression |
| 1 | | nnnn0 9258 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 2 | | znchr.y |
. . . . . . . 8
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
| 3 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 4 | | eqid 2196 |
. . . . . . . 8
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
| 5 | 2, 3, 4 | znzrhfo 14214 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
| 6 | 1, 5 | syl 14 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
| 7 | | znrrg.e |
. . . . . . . 8
⊢ 𝐸 = (RLReg‘𝑌) |
| 8 | 7, 3 | rrgss 13832 |
. . . . . . 7
⊢ 𝐸 ⊆ (Base‘𝑌) |
| 9 | 8 | sseli 3180 |
. . . . . 6
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ (Base‘𝑌)) |
| 10 | | foelrn 5800 |
. . . . . 6
⊢
(((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)) |
| 11 | 6, 9, 10 | syl2an 289 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)) |
| 12 | 11 | ex 115 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))) |
| 13 | | nncn 9000 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 14 | 13 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ) |
| 15 | | simplr 528 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ) |
| 16 | | nnz 9347 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 17 | 16 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ) |
| 18 | | nnne0 9020 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 19 | 18 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0) |
| 20 | | simpr 110 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0) |
| 21 | 20 | necon3ai 2416 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0)) |
| 22 | 19, 21 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0)) |
| 23 | | gcdn0cl 12139 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ) |
| 24 | 15, 17, 22, 23 | syl21anc 1248 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ) |
| 25 | 24 | nncnd 9006 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ) |
| 26 | 24 | nnap0d 9038 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) # 0) |
| 27 | 14, 25, 26 | divcanap2d 8821 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁) |
| 28 | | gcddvds 12140 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁)) |
| 29 | 15, 17, 28 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁)) |
| 30 | 29 | simpld 112 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛) |
| 31 | 24 | nnzd 9449 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ) |
| 32 | 29 | simprd 114 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁) |
| 33 | | simpll 527 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ) |
| 34 | | nndivdvds 11963 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)) |
| 35 | 33, 24, 34 | syl2anc 411 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)) |
| 36 | 32, 35 | mpbid 147 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ) |
| 37 | 36 | nnzd 9449 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) |
| 38 | | dvdsmulc 11986 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))) |
| 39 | 31, 15, 37, 38 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))) |
| 40 | 30, 39 | mpd 13 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) |
| 41 | 27, 40 | eqbrtrrd 4058 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) |
| 42 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) |
| 43 | 1 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈
ℕ0) |
| 44 | 43, 5 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌)) |
| 45 | | fof 5481 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌)) |
| 47 | 46, 37 | ffvelcdmd 5699 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) |
| 48 | | eqid 2196 |
. . . . . . . . . . . . . . . 16
⊢
(.r‘𝑌) = (.r‘𝑌) |
| 49 | | eqid 2196 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝑌) = (0g‘𝑌) |
| 50 | 7, 3, 48, 49 | rrgeq0i 13830 |
. . . . . . . . . . . . . . 15
⊢
((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) →
((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g‘𝑌))) |
| 51 | 42, 47, 50 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) →
((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g‘𝑌))) |
| 52 | 2 | zncrng 14211 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 53 | 1, 52 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ CRing) |
| 54 | 53 | crngringd 13575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑌 ∈ Ring) |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring) |
| 56 | 4 | zrhrhm 14189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑌 ∈ Ring →
(ℤRHom‘𝑌)
∈ (ℤring RingHom 𝑌)) |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring
RingHom 𝑌)) |
| 58 | | zringbas 14162 |
. . . . . . . . . . . . . . . . . 18
⊢ ℤ =
(Base‘ℤring) |
| 59 | | zringmulr 14165 |
. . . . . . . . . . . . . . . . . 18
⊢ ·
= (.r‘ℤring) |
| 60 | 58, 59, 48 | rhmmul 13730 |
. . . . . . . . . . . . . . . . 17
⊢
(((ℤRHom‘𝑌) ∈ (ℤring RingHom
𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) →
((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))))) |
| 61 | 57, 15, 37, 60 | syl3anc 1249 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))))) |
| 62 | 61 | eqeq1d 2205 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) ↔
(((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌))) |
| 63 | 15, 37 | zmulcld 9456 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) |
| 64 | 2, 4, 49 | zndvds0 14216 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))) |
| 65 | 43, 63, 64 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))) |
| 66 | 62, 65 | bitr3d 190 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r‘𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))) |
| 67 | 2, 4, 49 | zndvds0 14216 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) →
(((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))) |
| 68 | 43, 37, 67 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g‘𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))) |
| 69 | 51, 66, 68 | 3imtr3d 202 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))) |
| 70 | 41, 69 | mpd 13 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))) |
| 71 | 14, 25, 26 | divcanap1d 8820 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁) |
| 72 | 36 | nncnd 9006 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ) |
| 73 | 72 | mulridd 8045 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁))) |
| 74 | 70, 71, 73 | 3brtr4d 4066 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1)) |
| 75 | | 1zzd 9355 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ) |
| 76 | 36 | nnne0d 9037 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0) |
| 77 | | dvdscmulr 11987 |
. . . . . . . . . . . 12
⊢ (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ
∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1)) |
| 78 | 31, 75, 37, 76, 77 | syl112anc 1253 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1)) |
| 79 | 74, 78 | mpbid 147 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1) |
| 80 | 15, 17 | gcdcld 12145 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈
ℕ0) |
| 81 | | dvds1 12020 |
. . . . . . . . . . 11
⊢ ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1)) |
| 82 | 80, 81 | syl 14 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1)) |
| 83 | 79, 82 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1) |
| 84 | | znunit.u |
. . . . . . . . . . 11
⊢ 𝑈 = (Unit‘𝑌) |
| 85 | 2, 84, 4 | znunit 14225 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑛 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1)) |
| 86 | 43, 15, 85 | syl2anc 411 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1)) |
| 87 | 83, 86 | mpbird 167 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧
((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈) |
| 88 | 87 | ex 115 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) →
(((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)) |
| 89 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥 ∈ 𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)) |
| 90 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥 ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)) |
| 91 | 89, 90 | imbi12d 234 |
. . . . . . 7
⊢ (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))) |
| 92 | 88, 91 | syl5ibrcom 157 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈))) |
| 93 | 92 | rexlimdva 2614 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(∃𝑛 ∈ ℤ
𝑥 =
((ℤRHom‘𝑌)‘𝑛) → (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈))) |
| 94 | 93 | com23 78 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥 ∈ 𝑈))) |
| 95 | 12, 94 | mpdd 41 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ 𝐸 → 𝑥 ∈ 𝑈)) |
| 96 | 95 | ssrdv 3190 |
. 2
⊢ (𝑁 ∈ ℕ → 𝐸 ⊆ 𝑈) |
| 97 | 7, 84 | unitrrg 13833 |
. . 3
⊢ (𝑌 ∈ Ring → 𝑈 ⊆ 𝐸) |
| 98 | 54, 97 | syl 14 |
. 2
⊢ (𝑁 ∈ ℕ → 𝑈 ⊆ 𝐸) |
| 99 | 96, 98 | eqssd 3201 |
1
⊢ (𝑁 ∈ ℕ → 𝐸 = 𝑈) |