ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znrrg GIF version

Theorem znrrg 14294
Description: The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znrrg.e 𝐸 = (RLReg‘𝑌)
Assertion
Ref Expression
znrrg (𝑁 ∈ ℕ → 𝐸 = 𝑈)

Proof of Theorem znrrg
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9275 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 znchr.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 eqid 2196 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2196 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
52, 3, 4znzrhfo 14282 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
61, 5syl 14 . . . . . 6 (𝑁 ∈ ℕ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
7 znrrg.e . . . . . . . 8 𝐸 = (RLReg‘𝑌)
87, 3rrgss 13900 . . . . . . 7 𝐸 ⊆ (Base‘𝑌)
98sseli 3180 . . . . . 6 (𝑥𝐸𝑥 ∈ (Base‘𝑌))
10 foelrn 5802 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
116, 9, 10syl2an 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
1211ex 115 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)))
13 nncn 9017 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1413ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ)
15 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ)
16 nnz 9364 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ)
18 nnne0 9037 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1918ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0)
20 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2120necon3ai 2416 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
2219, 21syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
23 gcdn0cl 12156 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ)
2415, 17, 22, 23syl21anc 1248 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ)
2524nncnd 9023 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ)
2624nnap0d 9055 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) # 0)
2714, 25, 26divcanap2d 8838 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁)
28 gcddvds 12157 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
2915, 17, 28syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
3029simpld 112 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛)
3124nnzd 9466 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ)
3229simprd 114 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁)
33 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ)
34 nndivdvds 11980 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3533, 24, 34syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3632, 35mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)
3736nnzd 9466 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ)
38 dvdsmulc 12003 . . . . . . . . . . . . . . . 16 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
3931, 15, 37, 38syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
4030, 39mpd 13 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
4127, 40eqbrtrrd 4058 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
42 simpr 110 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)
431ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ0)
4443, 5syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
45 fof 5483 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4644, 45syl 14 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4746, 37ffvelcdmd 5701 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌))
48 eqid 2196 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
49 eqid 2196 . . . . . . . . . . . . . . . 16 (0g𝑌) = (0g𝑌)
507, 3, 48, 49rrgeq0i 13898 . . . . . . . . . . . . . . 15 ((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
5142, 47, 50syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
522zncrng 14279 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
531, 52syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5453crngringd 13643 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
5554ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring)
564zrhrhm 14257 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
58 zringbas 14230 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
59 zringmulr 14233 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℤring)
6058, 59, 48rhmmul 13798 . . . . . . . . . . . . . . . . 17 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6157, 15, 37, 60syl3anc 1249 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6261eqeq1d 2205 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌)))
6315, 37zmulcld 9473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ)
642, 4, 49zndvds0 14284 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6543, 63, 64syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6662, 65bitr3d 190 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
672, 4, 49zndvds0 14284 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6843, 37, 67syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6951, 66, 683imtr3d 202 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7041, 69mpd 13 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))
7114, 25, 26divcanap1d 8837 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁)
7236nncnd 9023 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ)
7372mulridd 8062 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁)))
7470, 71, 733brtr4d 4066 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1))
75 1zzd 9372 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ)
7636nnne0d 9054 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)
77 dvdscmulr 12004 . . . . . . . . . . . 12 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7831, 75, 37, 76, 77syl112anc 1253 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7974, 78mpbid 147 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1)
8015, 17gcdcld 12162 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ0)
81 dvds1 12037 . . . . . . . . . . 11 ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8280, 81syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8379, 82mpbid 147 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1)
84 znunit.u . . . . . . . . . . 11 𝑈 = (Unit‘𝑌)
852, 84, 4znunit 14293 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8643, 15, 85syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8783, 86mpbird 167 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)
8887ex 115 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
89 eleq1 2259 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸))
90 eleq1 2259 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
9189, 90imbi12d 234 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥𝐸𝑥𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)))
9288, 91syl5ibrcom 157 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9392rexlimdva 2614 . . . . 5 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9493com23 78 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥𝑈)))
9512, 94mpdd 41 . . 3 (𝑁 ∈ ℕ → (𝑥𝐸𝑥𝑈))
9695ssrdv 3190 . 2 (𝑁 ∈ ℕ → 𝐸𝑈)
977, 84unitrrg 13901 . . 3 (𝑌 ∈ Ring → 𝑈𝐸)
9854, 97syl 14 . 2 (𝑁 ∈ ℕ → 𝑈𝐸)
9996, 98eqssd 3201 1 (𝑁 ∈ ℕ → 𝐸 = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476  wss 3157   class class class wbr 4034  wf 5255  ontowfo 5257  cfv 5259  (class class class)co 5925  cc 7896  0cc0 7898  1c1 7899   · cmul 7903   / cdiv 8718  cn 9009  0cn0 9268  cz 9345  cdvds 11971   gcd cgcd 12147  Basecbs 12705  .rcmulr 12783  0gc0g 12960  Ringcrg 13630  CRingccrg 13631  Unitcui 13721   RingHom crh 13784  RLRegcrlreg 13889  ringczring 14224  ℤRHomczrh 14245  ℤ/nczn 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-frec 6458  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-starv 12797  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-unif 12805  df-0g 12962  df-topgen 12964  df-iimas 13006  df-qus 13007  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-mhm 13163  df-grp 13207  df-minusg 13208  df-sbg 13209  df-mulg 13328  df-subg 13378  df-nsg 13379  df-eqg 13380  df-ghm 13449  df-cmn 13494  df-abl 13495  df-mgp 13555  df-rng 13567  df-ur 13594  df-srg 13598  df-ring 13632  df-cring 13633  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755  df-rhm 13786  df-subrg 13853  df-rlreg 13892  df-lmod 13923  df-lssm 13987  df-lsp 14021  df-sra 14069  df-rgmod 14070  df-lidl 14103  df-rsp 14104  df-2idl 14134  df-bl 14180  df-mopn 14181  df-fg 14183  df-metu 14184  df-cnfld 14191  df-zring 14225  df-zrh 14248  df-zn 14250
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator