ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znrrg GIF version

Theorem znrrg 14632
Description: The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znrrg.e 𝐸 = (RLReg‘𝑌)
Assertion
Ref Expression
znrrg (𝑁 ∈ ℕ → 𝐸 = 𝑈)

Proof of Theorem znrrg
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9384 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 znchr.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 eqid 2229 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2229 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
52, 3, 4znzrhfo 14620 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
61, 5syl 14 . . . . . 6 (𝑁 ∈ ℕ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
7 znrrg.e . . . . . . . 8 𝐸 = (RLReg‘𝑌)
87, 3rrgss 14238 . . . . . . 7 𝐸 ⊆ (Base‘𝑌)
98sseli 3220 . . . . . 6 (𝑥𝐸𝑥 ∈ (Base‘𝑌))
10 foelrn 5882 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
116, 9, 10syl2an 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
1211ex 115 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)))
13 nncn 9126 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1413ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ)
15 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ)
16 nnz 9473 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ)
18 nnne0 9146 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1918ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0)
20 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2120necon3ai 2449 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
2219, 21syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
23 gcdn0cl 12491 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ)
2415, 17, 22, 23syl21anc 1270 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ)
2524nncnd 9132 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ)
2624nnap0d 9164 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) # 0)
2714, 25, 26divcanap2d 8947 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁)
28 gcddvds 12492 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
2915, 17, 28syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
3029simpld 112 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛)
3124nnzd 9576 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ)
3229simprd 114 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁)
33 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ)
34 nndivdvds 12315 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3533, 24, 34syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3632, 35mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)
3736nnzd 9576 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ)
38 dvdsmulc 12338 . . . . . . . . . . . . . . . 16 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
3931, 15, 37, 38syl3anc 1271 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
4030, 39mpd 13 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
4127, 40eqbrtrrd 4107 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
42 simpr 110 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)
431ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ0)
4443, 5syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
45 fof 5550 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4644, 45syl 14 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4746, 37ffvelcdmd 5773 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌))
48 eqid 2229 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
49 eqid 2229 . . . . . . . . . . . . . . . 16 (0g𝑌) = (0g𝑌)
507, 3, 48, 49rrgeq0i 14236 . . . . . . . . . . . . . . 15 ((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
5142, 47, 50syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
522zncrng 14617 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
531, 52syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5453crngringd 13980 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
5554ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring)
564zrhrhm 14595 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
58 zringbas 14568 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
59 zringmulr 14571 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℤring)
6058, 59, 48rhmmul 14136 . . . . . . . . . . . . . . . . 17 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6157, 15, 37, 60syl3anc 1271 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6261eqeq1d 2238 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌)))
6315, 37zmulcld 9583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ)
642, 4, 49zndvds0 14622 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6543, 63, 64syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6662, 65bitr3d 190 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
672, 4, 49zndvds0 14622 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6843, 37, 67syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6951, 66, 683imtr3d 202 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7041, 69mpd 13 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))
7114, 25, 26divcanap1d 8946 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁)
7236nncnd 9132 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ)
7372mulridd 8171 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁)))
7470, 71, 733brtr4d 4115 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1))
75 1zzd 9481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ)
7636nnne0d 9163 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)
77 dvdscmulr 12339 . . . . . . . . . . . 12 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7831, 75, 37, 76, 77syl112anc 1275 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7974, 78mpbid 147 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1)
8015, 17gcdcld 12497 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ0)
81 dvds1 12372 . . . . . . . . . . 11 ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8280, 81syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8379, 82mpbid 147 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1)
84 znunit.u . . . . . . . . . . 11 𝑈 = (Unit‘𝑌)
852, 84, 4znunit 14631 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8643, 15, 85syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8783, 86mpbird 167 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)
8887ex 115 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
89 eleq1 2292 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸))
90 eleq1 2292 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
9189, 90imbi12d 234 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥𝐸𝑥𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)))
9288, 91syl5ibrcom 157 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9392rexlimdva 2648 . . . . 5 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9493com23 78 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥𝑈)))
9512, 94mpdd 41 . . 3 (𝑁 ∈ ℕ → (𝑥𝐸𝑥𝑈))
9695ssrdv 3230 . 2 (𝑁 ∈ ℕ → 𝐸𝑈)
977, 84unitrrg 14239 . . 3 (𝑌 ∈ Ring → 𝑈𝐸)
9854, 97syl 14 . 2 (𝑁 ∈ ℕ → 𝑈𝐸)
9996, 98eqssd 3241 1 (𝑁 ∈ ℕ → 𝐸 = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509  wss 3197   class class class wbr 4083  wf 5314  ontowfo 5316  cfv 5318  (class class class)co 6007  cc 8005  0cc0 8007  1c1 8008   · cmul 8012   / cdiv 8827  cn 9118  0cn0 9377  cz 9454  cdvds 12306   gcd cgcd 12482  Basecbs 13040  .rcmulr 13119  0gc0g 13297  Ringcrg 13967  CRingccrg 13968  Unitcui 14058   RingHom crh 14122  RLRegcrlreg 14227  ringczring 14562  ℤRHomczrh 14583  ℤ/nczn 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-tpos 6397  df-recs 6457  df-frec 6543  df-er 6688  df-ec 6690  df-qs 6694  df-map 6805  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-topgen 13301  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mhm 13500  df-grp 13544  df-minusg 13545  df-sbg 13546  df-mulg 13665  df-subg 13715  df-nsg 13716  df-eqg 13717  df-ghm 13786  df-cmn 13831  df-abl 13832  df-mgp 13892  df-rng 13904  df-ur 13931  df-srg 13935  df-ring 13969  df-cring 13970  df-oppr 14039  df-dvdsr 14060  df-unit 14061  df-invr 14093  df-rhm 14124  df-subrg 14191  df-rlreg 14230  df-lmod 14261  df-lssm 14325  df-lsp 14359  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-rsp 14442  df-2idl 14472  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-zring 14563  df-zrh 14586  df-zn 14588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator