ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znrrg GIF version

Theorem znrrg 14609
Description: The regular elements of ℤ/n are exactly the units. (This theorem fails for 𝑁 = 0, where all nonzero integers are regular, but only ±1 are units.) (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znrrg.e 𝐸 = (RLReg‘𝑌)
Assertion
Ref Expression
znrrg (𝑁 ∈ ℕ → 𝐸 = 𝑈)

Proof of Theorem znrrg
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9364 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 znchr.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
3 eqid 2229 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
4 eqid 2229 . . . . . . . 8 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
52, 3, 4znzrhfo 14597 . . . . . . 7 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
61, 5syl 14 . . . . . 6 (𝑁 ∈ ℕ → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
7 znrrg.e . . . . . . . 8 𝐸 = (RLReg‘𝑌)
87, 3rrgss 14215 . . . . . . 7 𝐸 ⊆ (Base‘𝑌)
98sseli 3220 . . . . . 6 (𝑥𝐸𝑥 ∈ (Base‘𝑌))
10 foelrn 5869 . . . . . 6 (((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) ∧ 𝑥 ∈ (Base‘𝑌)) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
116, 9, 10syl2an 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥𝐸) → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛))
1211ex 115 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → ∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛)))
13 nncn 9106 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1413ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℂ)
15 simplr 528 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑛 ∈ ℤ)
16 nnz 9453 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1716ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℤ)
18 nnne0 9126 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1918ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ≠ 0)
20 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((𝑛 = 0 ∧ 𝑁 = 0) → 𝑁 = 0)
2120necon3ai 2449 . . . . . . . . . . . . . . . . . 18 (𝑁 ≠ 0 → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
2219, 21syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ¬ (𝑛 = 0 ∧ 𝑁 = 0))
23 gcdn0cl 12469 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑛 = 0 ∧ 𝑁 = 0)) → (𝑛 gcd 𝑁) ∈ ℕ)
2415, 17, 22, 23syl21anc 1270 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ)
2524nncnd 9112 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℂ)
2624nnap0d 9144 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) # 0)
2714, 25, 26divcanap2d 8927 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) = 𝑁)
28 gcddvds 12470 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
2915, 17, 28syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 ∧ (𝑛 gcd 𝑁) ∥ 𝑁))
3029simpld 112 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑛)
3124nnzd 9556 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℤ)
3229simprd 114 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 𝑁)
33 simpll 527 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ)
34 nndivdvds 12293 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ (𝑛 gcd 𝑁) ∈ ℕ) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3533, 24, 34syl2anc 411 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑁 ↔ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ))
3632, 35mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℕ)
3736nnzd 9556 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ)
38 dvdsmulc 12316 . . . . . . . . . . . . . . . 16 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
3931, 15, 37, 38syl3anc 1271 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 𝑛 → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
4030, 39mpd 13 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) · (𝑁 / (𝑛 gcd 𝑁))) ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
4127, 40eqbrtrrd 4106 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))))
42 simpr 110 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸)
431ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∈ ℕ0)
4443, 5syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌))
45 fof 5544 . . . . . . . . . . . . . . . . 17 ((ℤRHom‘𝑌):ℤ–onto→(Base‘𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4644, 45syl 14 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
4746, 37ffvelcdmd 5764 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌))
48 eqid 2229 . . . . . . . . . . . . . . . 16 (.r𝑌) = (.r𝑌)
49 eqid 2229 . . . . . . . . . . . . . . . 16 (0g𝑌) = (0g𝑌)
507, 3, 48, 49rrgeq0i 14213 . . . . . . . . . . . . . . 15 ((((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 ∧ ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
5142, 47, 50syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) → ((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌)))
522zncrng 14594 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
531, 52syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑌 ∈ CRing)
5453crngringd 13958 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑌 ∈ Ring)
5554ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑌 ∈ Ring)
564zrhrhm 14572 . . . . . . . . . . . . . . . . . 18 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
58 zringbas 14545 . . . . . . . . . . . . . . . . . 18 ℤ = (Base‘ℤring)
59 zringmulr 14548 . . . . . . . . . . . . . . . . . 18 · = (.r‘ℤring)
6058, 59, 48rhmmul 14113 . . . . . . . . . . . . . . . . 17 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6157, 15, 37, 60syl3anc 1271 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))))
6261eqeq1d 2238 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌)))
6315, 37zmulcld 9563 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ)
642, 4, 49zndvds0 14599 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6543, 63, 64syl2anc 411 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑛 · (𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
6662, 65bitr3d 190 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((((ℤRHom‘𝑌)‘𝑛)(.r𝑌)((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁)))) = (0g𝑌) ↔ 𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁)))))
672, 4, 49zndvds0 14599 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ (𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6843, 37, 67syl2anc 411 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘(𝑁 / (𝑛 gcd 𝑁))) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
6951, 66, 683imtr3d 202 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 ∥ (𝑛 · (𝑁 / (𝑛 gcd 𝑁))) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁))))
7041, 69mpd 13 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 𝑁 ∥ (𝑁 / (𝑛 gcd 𝑁)))
7114, 25, 26divcanap1d 8926 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) = 𝑁)
7236nncnd 9112 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ∈ ℂ)
7372mulridd 8151 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · 1) = (𝑁 / (𝑛 gcd 𝑁)))
7470, 71, 733brtr4d 4114 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1))
75 1zzd 9461 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → 1 ∈ ℤ)
7636nnne0d 9143 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)
77 dvdscmulr 12317 . . . . . . . . . . . 12 (((𝑛 gcd 𝑁) ∈ ℤ ∧ 1 ∈ ℤ ∧ ((𝑁 / (𝑛 gcd 𝑁)) ∈ ℤ ∧ (𝑁 / (𝑛 gcd 𝑁)) ≠ 0)) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7831, 75, 37, 76, 77syl112anc 1275 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((𝑁 / (𝑛 gcd 𝑁)) · (𝑛 gcd 𝑁)) ∥ ((𝑁 / (𝑛 gcd 𝑁)) · 1) ↔ (𝑛 gcd 𝑁) ∥ 1))
7974, 78mpbid 147 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∥ 1)
8015, 17gcdcld 12475 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) ∈ ℕ0)
81 dvds1 12350 . . . . . . . . . . 11 ((𝑛 gcd 𝑁) ∈ ℕ0 → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8280, 81syl 14 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((𝑛 gcd 𝑁) ∥ 1 ↔ (𝑛 gcd 𝑁) = 1))
8379, 82mpbid 147 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (𝑛 gcd 𝑁) = 1)
84 znunit.u . . . . . . . . . . 11 𝑈 = (Unit‘𝑌)
852, 84, 4znunit 14608 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8643, 15, 85syl2anc 411 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈 ↔ (𝑛 gcd 𝑁) = 1))
8783, 86mpbird 167 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) ∧ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸) → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)
8887ex 115 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
89 eleq1 2292 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸))
90 eleq1 2292 . . . . . . . 8 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝑈 ↔ ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈))
9189, 90imbi12d 234 . . . . . . 7 (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → ((𝑥𝐸𝑥𝑈) ↔ (((ℤRHom‘𝑌)‘𝑛) ∈ 𝐸 → ((ℤRHom‘𝑌)‘𝑛) ∈ 𝑈)))
9288, 91syl5ibrcom 157 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → (𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9392rexlimdva 2648 . . . . 5 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → (𝑥𝐸𝑥𝑈)))
9493com23 78 . . . 4 (𝑁 ∈ ℕ → (𝑥𝐸 → (∃𝑛 ∈ ℤ 𝑥 = ((ℤRHom‘𝑌)‘𝑛) → 𝑥𝑈)))
9512, 94mpdd 41 . . 3 (𝑁 ∈ ℕ → (𝑥𝐸𝑥𝑈))
9695ssrdv 3230 . 2 (𝑁 ∈ ℕ → 𝐸𝑈)
977, 84unitrrg 14216 . . 3 (𝑌 ∈ Ring → 𝑈𝐸)
9854, 97syl 14 . 2 (𝑁 ∈ ℕ → 𝑈𝐸)
9996, 98eqssd 3241 1 (𝑁 ∈ ℕ → 𝐸 = 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509  wss 3197   class class class wbr 4082  wf 5310  ontowfo 5312  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   · cmul 7992   / cdiv 8807  cn 9098  0cn0 9357  cz 9434  cdvds 12284   gcd cgcd 12460  Basecbs 13018  .rcmulr 13097  0gc0g 13275  Ringcrg 13945  CRingccrg 13946  Unitcui 14036   RingHom crh 14099  RLRegcrlreg 14204  ringczring 14539  ℤRHomczrh 14560  ℤ/nczn 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-tpos 6381  df-recs 6441  df-frec 6527  df-er 6670  df-ec 6672  df-qs 6676  df-map 6787  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-starv 13111  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-unif 13119  df-0g 13277  df-topgen 13279  df-iimas 13321  df-qus 13322  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-mhm 13478  df-grp 13522  df-minusg 13523  df-sbg 13524  df-mulg 13643  df-subg 13693  df-nsg 13694  df-eqg 13695  df-ghm 13764  df-cmn 13809  df-abl 13810  df-mgp 13870  df-rng 13882  df-ur 13909  df-srg 13913  df-ring 13947  df-cring 13948  df-oppr 14017  df-dvdsr 14038  df-unit 14039  df-invr 14070  df-rhm 14101  df-subrg 14168  df-rlreg 14207  df-lmod 14238  df-lssm 14302  df-lsp 14336  df-sra 14384  df-rgmod 14385  df-lidl 14418  df-rsp 14419  df-2idl 14449  df-bl 14495  df-mopn 14496  df-fg 14498  df-metu 14499  df-cnfld 14506  df-zring 14540  df-zrh 14563  df-zn 14565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator