Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > metss2 | GIF version |
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
metequiv.3 | ⊢ 𝐽 = (MetOpen‘𝐶) |
metequiv.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
metss2.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
metss2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
metss2.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metss2.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
Ref | Expression |
---|---|
metss2 | ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+) | |
2 | metss2.3 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
3 | rpdivcl 9636 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anr 288 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑟 / 𝑅) ∈ ℝ+) |
5 | metequiv.3 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
6 | metequiv.4 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝐷) | |
7 | metss2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
8 | metss2.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
9 | metss2.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
10 | 5, 6, 7, 8, 2, 9 | metss2lem 13291 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
11 | oveq2 5861 | . . . . . 6 ⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) | |
12 | 11 | sseq1d 3176 | . . . . 5 ⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) |
13 | 12 | rspcev 2834 | . . . 4 ⊢ (((𝑟 / 𝑅) ∈ ℝ+ ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
14 | 4, 10, 13 | syl2anc 409 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
15 | 14 | ralrimivva 2552 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
16 | metxmet 13149 | . . . 4 ⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | |
17 | 7, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) |
18 | metxmet 13149 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
19 | 8, 18 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
20 | 5, 6 | metss 13288 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
21 | 17, 19, 20 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
22 | 15, 21 | mpbird 166 | 1 ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 · cmul 7779 ≤ cle 7955 / cdiv 8589 ℝ+crp 9610 ∞Metcxmet 12774 Metcmet 12775 ballcbl 12776 MetOpencmopn 12779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-bases 12835 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |