Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > metss2 | GIF version |
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
metequiv.3 | ⊢ 𝐽 = (MetOpen‘𝐶) |
metequiv.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
metss2.1 | ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) |
metss2.2 | ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
metss2.3 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
metss2.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) |
Ref | Expression |
---|---|
metss2 | ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+) | |
2 | metss2.3 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
3 | rpdivcl 9623 | . . . . 5 ⊢ ((𝑟 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+) | |
4 | 1, 2, 3 | syl2anr 288 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑟 / 𝑅) ∈ ℝ+) |
5 | metequiv.3 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐶) | |
6 | metequiv.4 | . . . . 5 ⊢ 𝐾 = (MetOpen‘𝐷) | |
7 | metss2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) | |
8 | metss2.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) | |
9 | metss2.4 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) | |
10 | 5, 6, 7, 8, 2, 9 | metss2lem 13212 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) |
11 | oveq2 5858 | . . . . . 6 ⊢ (𝑠 = (𝑟 / 𝑅) → (𝑥(ball‘𝐷)𝑠) = (𝑥(ball‘𝐷)(𝑟 / 𝑅))) | |
12 | 11 | sseq1d 3176 | . . . . 5 ⊢ (𝑠 = (𝑟 / 𝑅) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))) |
13 | 12 | rspcev 2834 | . . . 4 ⊢ (((𝑟 / 𝑅) ∈ ℝ+ ∧ (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
14 | 4, 10, 13 | syl2anc 409 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
15 | 14 | ralrimivva 2552 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟)) |
16 | metxmet 13070 | . . . 4 ⊢ (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | |
17 | 7, 16 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) |
18 | metxmet 13070 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
19 | 8, 18 | syl 14 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
20 | 5, 6 | metss 13209 | . . 3 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
21 | 17, 19, 20 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
22 | 15, 21 | mpbird 166 | 1 ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 class class class wbr 3987 ‘cfv 5196 (class class class)co 5850 · cmul 7766 ≤ cle 7942 / cdiv 8576 ℝ+crp 9597 ∞Metcxmet 12695 Metcmet 12696 ballcbl 12697 MetOpencmopn 12700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-map 6624 df-sup 6957 df-inf 6958 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-xneg 9716 df-xadd 9717 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-topgen 12586 df-psmet 12702 df-xmet 12703 df-met 12704 df-bl 12705 df-mopn 12706 df-top 12711 df-bases 12756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |