ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2 GIF version

Theorem metss2 14037
Description: If the metric 𝐷 is "strongly finer" than 𝐢 (meaning that there is a positive real constant 𝑅 such that 𝐢(π‘₯, 𝑦) ≀ 𝑅 Β· 𝐷(π‘₯, 𝑦)), then 𝐷 generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpenβ€˜πΆ)
metequiv.4 𝐾 = (MetOpenβ€˜π·)
metss2.1 (πœ‘ β†’ 𝐢 ∈ (Metβ€˜π‘‹))
metss2.2 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
metss2.3 (πœ‘ β†’ 𝑅 ∈ ℝ+)
metss2.4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐢𝑦) ≀ (𝑅 Β· (π‘₯𝐷𝑦)))
Assertion
Ref Expression
metss2 (πœ‘ β†’ 𝐽 βŠ† 𝐾)
Distinct variable groups:   π‘₯,𝑦,𝐢   π‘₯,𝐽,𝑦   π‘₯,𝐾,𝑦   𝑦,𝑅   π‘₯,𝐷,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hint:   𝑅(π‘₯)

Proof of Theorem metss2
Dummy variables 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 ((π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+) β†’ π‘Ÿ ∈ ℝ+)
2 metss2.3 . . . . 5 (πœ‘ β†’ 𝑅 ∈ ℝ+)
3 rpdivcl 9681 . . . . 5 ((π‘Ÿ ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) β†’ (π‘Ÿ / 𝑅) ∈ ℝ+)
41, 2, 3syl2anr 290 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘Ÿ / 𝑅) ∈ ℝ+)
5 metequiv.3 . . . . 5 𝐽 = (MetOpenβ€˜πΆ)
6 metequiv.4 . . . . 5 𝐾 = (MetOpenβ€˜π·)
7 metss2.1 . . . . 5 (πœ‘ β†’ 𝐢 ∈ (Metβ€˜π‘‹))
8 metss2.2 . . . . 5 (πœ‘ β†’ 𝐷 ∈ (Metβ€˜π‘‹))
9 metss2.4 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) β†’ (π‘₯𝐢𝑦) ≀ (𝑅 Β· (π‘₯𝐷𝑦)))
105, 6, 7, 8, 2, 9metss2lem 14036 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
11 oveq2 5885 . . . . . 6 (𝑠 = (π‘Ÿ / 𝑅) β†’ (π‘₯(ballβ€˜π·)𝑠) = (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)))
1211sseq1d 3186 . . . . 5 (𝑠 = (π‘Ÿ / 𝑅) β†’ ((π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ) ↔ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
1312rspcev 2843 . . . 4 (((π‘Ÿ / 𝑅) ∈ ℝ+ ∧ (π‘₯(ballβ€˜π·)(π‘Ÿ / 𝑅)) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
144, 10, 13syl2anc 411 . . 3 ((πœ‘ ∧ (π‘₯ ∈ 𝑋 ∧ π‘Ÿ ∈ ℝ+)) β†’ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
1514ralrimivva 2559 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ))
16 metxmet 13894 . . . 4 (𝐢 ∈ (Metβ€˜π‘‹) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
177, 16syl 14 . . 3 (πœ‘ β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
18 metxmet 13894 . . . 4 (𝐷 ∈ (Metβ€˜π‘‹) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
198, 18syl 14 . . 3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
205, 6metss 14033 . . 3 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2117, 19, 20syl2anc 411 . 2 (πœ‘ β†’ (𝐽 βŠ† 𝐾 ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘Ÿ ∈ ℝ+ βˆƒπ‘  ∈ ℝ+ (π‘₯(ballβ€˜π·)𝑠) βŠ† (π‘₯(ballβ€˜πΆ)π‘Ÿ)))
2215, 21mpbird 167 1 (πœ‘ β†’ 𝐽 βŠ† 𝐾)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   βŠ† wss 3131   class class class wbr 4005  β€˜cfv 5218  (class class class)co 5877   Β· cmul 7818   ≀ cle 7995   / cdiv 8631  β„+crp 9655  βˆžMetcxmet 13479  Metcmet 13480  ballcbl 13481  MetOpencmopn 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-bases 13582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator