![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > metss2 | GIF version |
Description: If the metric π· is "strongly finer" than πΆ (meaning that there is a positive real constant π such that πΆ(π₯, π¦) β€ π Β· π·(π₯, π¦)), then π· generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
Ref | Expression |
---|---|
metequiv.3 | β’ π½ = (MetOpenβπΆ) |
metequiv.4 | β’ πΎ = (MetOpenβπ·) |
metss2.1 | β’ (π β πΆ β (Metβπ)) |
metss2.2 | β’ (π β π· β (Metβπ)) |
metss2.3 | β’ (π β π β β+) |
metss2.4 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) |
Ref | Expression |
---|---|
metss2 | β’ (π β π½ β πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . . . 5 β’ ((π₯ β π β§ π β β+) β π β β+) | |
2 | metss2.3 | . . . . 5 β’ (π β π β β+) | |
3 | rpdivcl 9681 | . . . . 5 β’ ((π β β+ β§ π β β+) β (π / π ) β β+) | |
4 | 1, 2, 3 | syl2anr 290 | . . . 4 β’ ((π β§ (π₯ β π β§ π β β+)) β (π / π ) β β+) |
5 | metequiv.3 | . . . . 5 β’ π½ = (MetOpenβπΆ) | |
6 | metequiv.4 | . . . . 5 β’ πΎ = (MetOpenβπ·) | |
7 | metss2.1 | . . . . 5 β’ (π β πΆ β (Metβπ)) | |
8 | metss2.2 | . . . . 5 β’ (π β π· β (Metβπ)) | |
9 | metss2.4 | . . . . 5 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯πΆπ¦) β€ (π Β· (π₯π·π¦))) | |
10 | 5, 6, 7, 8, 2, 9 | metss2lem 14036 | . . . 4 β’ ((π β§ (π₯ β π β§ π β β+)) β (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π)) |
11 | oveq2 5885 | . . . . . 6 β’ (π = (π / π ) β (π₯(ballβπ·)π ) = (π₯(ballβπ·)(π / π ))) | |
12 | 11 | sseq1d 3186 | . . . . 5 β’ (π = (π / π ) β ((π₯(ballβπ·)π ) β (π₯(ballβπΆ)π) β (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π))) |
13 | 12 | rspcev 2843 | . . . 4 β’ (((π / π ) β β+ β§ (π₯(ballβπ·)(π / π )) β (π₯(ballβπΆ)π)) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
14 | 4, 10, 13 | syl2anc 411 | . . 3 β’ ((π β§ (π₯ β π β§ π β β+)) β βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
15 | 14 | ralrimivva 2559 | . 2 β’ (π β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π)) |
16 | metxmet 13894 | . . . 4 β’ (πΆ β (Metβπ) β πΆ β (βMetβπ)) | |
17 | 7, 16 | syl 14 | . . 3 β’ (π β πΆ β (βMetβπ)) |
18 | metxmet 13894 | . . . 4 β’ (π· β (Metβπ) β π· β (βMetβπ)) | |
19 | 8, 18 | syl 14 | . . 3 β’ (π β π· β (βMetβπ)) |
20 | 5, 6 | metss 14033 | . . 3 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
21 | 17, 19, 20 | syl2anc 411 | . 2 β’ (π β (π½ β πΎ β βπ₯ β π βπ β β+ βπ β β+ (π₯(ballβπ·)π ) β (π₯(ballβπΆ)π))) |
22 | 15, 21 | mpbird 167 | 1 β’ (π β π½ β πΎ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 βwrex 2456 β wss 3131 class class class wbr 4005 βcfv 5218 (class class class)co 5877 Β· cmul 7818 β€ cle 7995 / cdiv 8631 β+crp 9655 βMetcxmet 13479 Metcmet 13480 ballcbl 13481 MetOpencmopn 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-map 6652 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-topgen 12714 df-psmet 13486 df-xmet 13487 df-met 13488 df-bl 13489 df-mopn 13490 df-top 13537 df-bases 13582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |