ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonn0p1p1 GIF version

Theorem fzonn0p1p1 10169
Description: If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
Assertion
Ref Expression
fzonn0p1p1 (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))

Proof of Theorem fzonn0p1p1
StepHypRef Expression
1 elfzo0 10138 . 2 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 peano2nn0 9175 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
323ad2ant1 1013 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) ∈ ℕ0)
4 peano2nn 8890 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
543ad2ant2 1014 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝑁 + 1) ∈ ℕ)
6 simp3 994 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 < 𝑁)
7 nn0re 9144 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
8 nnre 8885 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 7935 . . . . 5 (𝐼 < 𝑁 → 1 ∈ ℝ)
10 ltadd1 8348 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐼 < 𝑁 ↔ (𝐼 + 1) < (𝑁 + 1)))
117, 8, 9, 10syl3an 1275 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 < 𝑁 ↔ (𝐼 + 1) < (𝑁 + 1)))
126, 11mpbid 146 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) < (𝑁 + 1))
13 elfzo0 10138 . . 3 ((𝐼 + 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝐼 + 1) < (𝑁 + 1)))
143, 5, 12, 13syl3anbrc 1176 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))
151, 14sylbi 120 1 (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973  wcel 2141   class class class wbr 3989  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   < clt 7954  cn 8878  0cn0 9135  ..^cfzo 10098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator