ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzonn0p1p1 GIF version

Theorem fzonn0p1p1 10148
Description: If a nonnegative integer is element of a half-open range of nonnegative integers, increasing this integer by one results in an element of a half- open range of nonnegative integers with the upper bound increased by one. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
Assertion
Ref Expression
fzonn0p1p1 (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))

Proof of Theorem fzonn0p1p1
StepHypRef Expression
1 elfzo0 10117 . 2 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 peano2nn0 9154 . . . 4 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
323ad2ant1 1008 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) ∈ ℕ0)
4 peano2nn 8869 . . . 4 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
543ad2ant2 1009 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝑁 + 1) ∈ ℕ)
6 simp3 989 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 < 𝑁)
7 nn0re 9123 . . . . 5 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
8 nnre 8864 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 7914 . . . . 5 (𝐼 < 𝑁 → 1 ∈ ℝ)
10 ltadd1 8327 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐼 < 𝑁 ↔ (𝐼 + 1) < (𝑁 + 1)))
117, 8, 9, 10syl3an 1270 . . . 4 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 < 𝑁 ↔ (𝐼 + 1) < (𝑁 + 1)))
126, 11mpbid 146 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) < (𝑁 + 1))
13 elfzo0 10117 . . 3 ((𝐼 + 1) ∈ (0..^(𝑁 + 1)) ↔ ((𝐼 + 1) ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ (𝐼 + 1) < (𝑁 + 1)))
143, 5, 12, 13syl3anbrc 1171 . 2 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))
151, 14sylbi 120 1 (𝐼 ∈ (0..^𝑁) → (𝐼 + 1) ∈ (0..^(𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968  wcel 2136   class class class wbr 3982  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cn 8857  0cn0 9114  ..^cfzo 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator