ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulasspig GIF version

Theorem mulasspig 7252
Description: Multiplication of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
mulasspig ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))

Proof of Theorem mulasspig
StepHypRef Expression
1 pinn 7229 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7229 . . 3 (𝐵N𝐵 ∈ ω)
3 pinn 7229 . . 3 (𝐶N𝐶 ∈ ω)
4 nnmass 6434 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
51, 2, 3, 4syl3an 1262 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
6 mulclpi 7248 . . . . 5 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) ∈ N)
7 mulpiord 7237 . . . . 5 (((𝐴 ·N 𝐵) ∈ N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
86, 7sylan 281 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·N 𝐵) ·o 𝐶))
9 mulpiord 7237 . . . . . 6 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
109oveq1d 5839 . . . . 5 ((𝐴N𝐵N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
1110adantr 274 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·o 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
128, 11eqtrd 2190 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
13123impa 1177 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 mulclpi 7248 . . . . 5 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) ∈ N)
15 mulpiord 7237 . . . . 5 ((𝐴N ∧ (𝐵 ·N 𝐶) ∈ N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
1614, 15sylan2 284 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·N 𝐶)))
17 mulpiord 7237 . . . . . 6 ((𝐵N𝐶N) → (𝐵 ·N 𝐶) = (𝐵 ·o 𝐶))
1817oveq2d 5840 . . . . 5 ((𝐵N𝐶N) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1918adantl 275 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·o (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
2016, 19eqtrd 2190 . . 3 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
21203impb 1181 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 ·N (𝐵 ·N 𝐶)) = (𝐴 ·o (𝐵 ·o 𝐶)))
225, 13, 213eqtr4d 2200 1 ((𝐴N𝐵N𝐶N) → ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  ωcom 4549  (class class class)co 5824   ·o comu 6361  Ncnpi 7192   ·N cmi 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-oadd 6367  df-omul 6368  df-ni 7224  df-mi 7226
This theorem is referenced by:  enqer  7278  addcmpblnq  7287  mulcmpblnq  7288  ordpipqqs  7294  addassnqg  7302  mulassnqg  7304  mulcanenq  7305  distrnqg  7307  ltsonq  7318  ltanqg  7320  ltmnqg  7321  ltexnqq  7328
  Copyright terms: Public domain W3C validator