ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absmulgcd GIF version

Theorem absmulgcd 11545
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 11497 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 nn0re 8884 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ)
3 nn0ge0 8900 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 gcd 𝑁))
42, 3absidd 10825 . . . . 5 ((𝑀 gcd 𝑁) ∈ ℕ0 → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
51, 4syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
65oveq2d 5742 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
763adant1 980 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
8 zcn 8957 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
91nn0cnd 8930 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
10 absmul 10727 . . . 4 ((𝐾 ∈ ℂ ∧ (𝑀 gcd 𝑁) ∈ ℂ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
118, 9, 10syl2an 285 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
12113impb 1158 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
13 zcn 8957 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 8957 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 absmul 10727 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (abs‘(𝐾 · 𝑀)) = ((abs‘𝐾) · (abs‘𝑀)))
16 absmul 10727 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝐾 · 𝑁)) = ((abs‘𝐾) · (abs‘𝑁)))
1715, 16oveqan12d 5745 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
18173impdi 1252 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
198, 13, 14, 18syl3an 1239 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
20 zmulcl 9005 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21 zmulcl 9005 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
22 gcdabs 11518 . . . . . 6 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
2320, 21, 22syl2an 285 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
24233impdi 1252 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
25 nn0abscl 10743 . . . . 5 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℕ0)
26 zabscl 10744 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
27 zabscl 10744 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
28 mulgcd 11544 . . . . 5 (((abs‘𝐾) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℤ ∧ (abs‘𝑁) ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
2925, 26, 27, 28syl3an 1239 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
3019, 24, 293eqtr3d 2153 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
31 gcdabs 11518 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
32313adant1 980 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
3332oveq2d 5742 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
3430, 33eqtrd 2145 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
357, 12, 343eqtr4rd 2156 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 943   = wceq 1312  wcel 1461  cfv 5079  (class class class)co 5726  cc 7539   · cmul 7546  0cn0 8875  cz 8952  abscabs 10655   gcd cgcd 11477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-sup 6821  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-rp 9338  df-fz 9678  df-fzo 9807  df-fl 9930  df-mod 9983  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657  df-dvds 11336  df-gcd 11478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator