ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absmulgcd GIF version

Theorem absmulgcd 11950
Description: Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
absmulgcd ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))

Proof of Theorem absmulgcd
StepHypRef Expression
1 gcdcl 11899 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
2 nn0re 9123 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ)
3 nn0ge0 9139 . . . . . 6 ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤ (𝑀 gcd 𝑁))
42, 3absidd 11109 . . . . 5 ((𝑀 gcd 𝑁) ∈ ℕ0 → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
51, 4syl 14 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁))
65oveq2d 5858 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
763adant1 1005 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
8 zcn 9196 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
91nn0cnd 9169 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ)
10 absmul 11011 . . . 4 ((𝐾 ∈ ℂ ∧ (𝑀 gcd 𝑁) ∈ ℂ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
118, 9, 10syl2an 287 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
12113impb 1189 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁))))
13 zcn 9196 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 9196 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 absmul 11011 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (abs‘(𝐾 · 𝑀)) = ((abs‘𝐾) · (abs‘𝑀)))
16 absmul 11011 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (abs‘(𝐾 · 𝑁)) = ((abs‘𝐾) · (abs‘𝑁)))
1715, 16oveqan12d 5861 . . . . . 6 (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
18173impdi 1283 . . . . 5 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
198, 13, 14, 18syl3an 1270 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))))
20 zmulcl 9244 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21 zmulcl 9244 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
22 gcdabs 11921 . . . . . 6 (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
2320, 21, 22syl2an 287 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
24233impdi 1283 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)))
25 nn0abscl 11027 . . . . 5 (𝐾 ∈ ℤ → (abs‘𝐾) ∈ ℕ0)
26 zabscl 11028 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
27 zabscl 11028 . . . . 5 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
28 mulgcd 11949 . . . . 5 (((abs‘𝐾) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℤ ∧ (abs‘𝑁) ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
2925, 26, 27, 28syl3an 1270 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁))) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
3019, 24, 293eqtr3d 2206 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))))
31 gcdabs 11921 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
32313adant1 1005 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
3332oveq2d 5858 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
3430, 33eqtrd 2198 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · (𝑀 gcd 𝑁)))
357, 12, 343eqtr4rd 2209 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  cfv 5188  (class class class)co 5842  cc 7751   · cmul 7758  0cn0 9114  cz 9191  abscabs 10939   gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator