Proof of Theorem absmulgcd
| Step | Hyp | Ref
| Expression |
| 1 | | gcdcl 12133 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈
ℕ0) |
| 2 | | nn0re 9258 |
. . . . . 6
⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 → (𝑀 gcd 𝑁) ∈ ℝ) |
| 3 | | nn0ge0 9274 |
. . . . . 6
⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 → 0 ≤
(𝑀 gcd 𝑁)) |
| 4 | 2, 3 | absidd 11332 |
. . . . 5
⊢ ((𝑀 gcd 𝑁) ∈ ℕ0 →
(abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁)) |
| 5 | 1, 4 | syl 14 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝑀 gcd 𝑁)) = (𝑀 gcd 𝑁)) |
| 6 | 5 | oveq2d 5938 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝐾) ·
(abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁))) |
| 7 | 6 | 3adant1 1017 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝐾) ·
(abs‘(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (𝑀 gcd 𝑁))) |
| 8 | | zcn 9331 |
. . . 4
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
| 9 | 1 | nn0cnd 9304 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℂ) |
| 10 | | absmul 11234 |
. . . 4
⊢ ((𝐾 ∈ ℂ ∧ (𝑀 gcd 𝑁) ∈ ℂ) → (abs‘(𝐾 · (𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁)))) |
| 11 | 8, 9, 10 | syl2an 289 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
(abs‘(𝐾 ·
(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁)))) |
| 12 | 11 | 3impb 1201 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(abs‘(𝐾 ·
(𝑀 gcd 𝑁))) = ((abs‘𝐾) · (abs‘(𝑀 gcd 𝑁)))) |
| 13 | | zcn 9331 |
. . . . 5
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
| 14 | | zcn 9331 |
. . . . 5
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
| 15 | | absmul 11234 |
. . . . . . 7
⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) →
(abs‘(𝐾 ·
𝑀)) = ((abs‘𝐾) · (abs‘𝑀))) |
| 16 | | absmul 11234 |
. . . . . . 7
⊢ ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
(abs‘(𝐾 ·
𝑁)) = ((abs‘𝐾) · (abs‘𝑁))) |
| 17 | 15, 16 | oveqan12d 5941 |
. . . . . 6
⊢ (((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ)) →
((abs‘(𝐾 ·
𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁)))) |
| 18 | 17 | 3impdi 1304 |
. . . . 5
⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) →
((abs‘(𝐾 ·
𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁)))) |
| 19 | 8, 13, 14, 18 | syl3an 1291 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘(𝐾 ·
𝑀)) gcd (abs‘(𝐾 · 𝑁))) = (((abs‘𝐾) · (abs‘𝑀)) gcd ((abs‘𝐾) · (abs‘𝑁)))) |
| 20 | | zmulcl 9379 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) |
| 21 | | zmulcl 9379 |
. . . . . 6
⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) |
| 22 | | gcdabs 12155 |
. . . . . 6
⊢ (((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ) → ((abs‘(𝐾 · 𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 23 | 20, 21, 22 | syl2an 289 |
. . . . 5
⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
((abs‘(𝐾 ·
𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 24 | 23 | 3impdi 1304 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘(𝐾 ·
𝑀)) gcd (abs‘(𝐾 · 𝑁))) = ((𝐾 · 𝑀) gcd (𝐾 · 𝑁))) |
| 25 | | nn0abscl 11250 |
. . . . 5
⊢ (𝐾 ∈ ℤ →
(abs‘𝐾) ∈
ℕ0) |
| 26 | | zabscl 11251 |
. . . . 5
⊢ (𝑀 ∈ ℤ →
(abs‘𝑀) ∈
ℤ) |
| 27 | | zabscl 11251 |
. . . . 5
⊢ (𝑁 ∈ ℤ →
(abs‘𝑁) ∈
ℤ) |
| 28 | | mulgcd 12183 |
. . . . 5
⊢
(((abs‘𝐾)
∈ ℕ0 ∧ (abs‘𝑀) ∈ ℤ ∧ (abs‘𝑁) ∈ ℤ) →
(((abs‘𝐾) ·
(abs‘𝑀)) gcd
((abs‘𝐾) ·
(abs‘𝑁))) =
((abs‘𝐾) ·
((abs‘𝑀) gcd
(abs‘𝑁)))) |
| 29 | 25, 26, 27, 28 | syl3an 1291 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
(((abs‘𝐾) ·
(abs‘𝑀)) gcd
((abs‘𝐾) ·
(abs‘𝑁))) =
((abs‘𝐾) ·
((abs‘𝑀) gcd
(abs‘𝑁)))) |
| 30 | 19, 24, 29 | 3eqtr3d 2237 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · ((abs‘𝑀) gcd (abs‘𝑁)))) |
| 31 | | gcdabs 12155 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) gcd
(abs‘𝑁)) = (𝑀 gcd 𝑁)) |
| 32 | 31 | 3adant1 1017 |
. . . 4
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝑀) gcd
(abs‘𝑁)) = (𝑀 gcd 𝑁)) |
| 33 | 32 | oveq2d 5938 |
. . 3
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) →
((abs‘𝐾) ·
((abs‘𝑀) gcd
(abs‘𝑁))) =
((abs‘𝐾) ·
(𝑀 gcd 𝑁))) |
| 34 | 30, 33 | eqtrd 2229 |
. 2
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = ((abs‘𝐾) · (𝑀 gcd 𝑁))) |
| 35 | 7, 12, 34 | 3eqtr4rd 2240 |
1
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁)))) |