| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpmulgcd | GIF version | ||
| Description: If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| rpmulgcd | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdmultiple 12374 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) | |
| 2 | 1 | 3adant2 1019 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) |
| 3 | 2 | oveq1d 5961 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd (𝑀 · 𝑁))) |
| 4 | nnz 9393 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
| 5 | 4 | 3ad2ant1 1021 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ) |
| 6 | nnz 9393 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 7 | zmulcl 9428 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) | |
| 8 | 4, 6, 7 | syl2an 289 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
| 9 | 8 | 3adant2 1019 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
| 10 | nnz 9393 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 11 | zmulcl 9428 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
| 12 | 10, 6, 11 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
| 13 | 12 | 3adant1 1018 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
| 14 | gcdass 12369 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) | |
| 15 | 5, 9, 13, 14 | syl3anc 1250 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
| 16 | 3, 15 | eqtr3d 2240 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
| 17 | 16 | adantr 276 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
| 18 | nnnn0 9304 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 19 | mulgcdr 12372 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) | |
| 20 | 4, 10, 18, 19 | syl3an 1292 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) |
| 21 | oveq1 5953 | . . . . 5 ⊢ ((𝐾 gcd 𝑀) = 1 → ((𝐾 gcd 𝑀) · 𝑁) = (1 · 𝑁)) | |
| 22 | 20, 21 | sylan9eq 2258 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = (1 · 𝑁)) |
| 23 | nncn 9046 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 24 | 23 | 3ad2ant3 1023 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
| 25 | 24 | adantr 276 | . . . . 5 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → 𝑁 ∈ ℂ) |
| 26 | 25 | mulid2d 8093 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (1 · 𝑁) = 𝑁) |
| 27 | 22, 26 | eqtrd 2238 | . . 3 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = 𝑁) |
| 28 | 27 | oveq2d 5962 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))) = (𝐾 gcd 𝑁)) |
| 29 | 17, 28 | eqtrd 2238 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 (class class class)co 5946 ℂcc 7925 1c1 7928 · cmul 7932 ℕcn 9038 ℕ0cn0 9297 ℤcz 9374 gcd cgcd 12307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-sup 7088 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-fz 10133 df-fzo 10267 df-fl 10415 df-mod 10470 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-dvds 12132 df-gcd 12308 |
| This theorem is referenced by: rplpwr 12381 lgsquad2lem2 15592 |
| Copyright terms: Public domain | W3C validator |