![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpmulgcd | GIF version |
Description: If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
rpmulgcd | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdmultiple 12160 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) | |
2 | 1 | 3adant2 1018 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) |
3 | 2 | oveq1d 5934 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd (𝑀 · 𝑁))) |
4 | nnz 9339 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
5 | 4 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ) |
6 | nnz 9339 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
7 | zmulcl 9373 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) | |
8 | 4, 6, 7 | syl2an 289 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
9 | 8 | 3adant2 1018 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
10 | nnz 9339 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
11 | zmulcl 9373 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
12 | 10, 6, 11 | syl2an 289 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
13 | 12 | 3adant1 1017 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
14 | gcdass 12155 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) | |
15 | 5, 9, 13, 14 | syl3anc 1249 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
16 | 3, 15 | eqtr3d 2228 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
17 | 16 | adantr 276 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
18 | nnnn0 9250 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
19 | mulgcdr 12158 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) | |
20 | 4, 10, 18, 19 | syl3an 1291 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) |
21 | oveq1 5926 | . . . . 5 ⊢ ((𝐾 gcd 𝑀) = 1 → ((𝐾 gcd 𝑀) · 𝑁) = (1 · 𝑁)) | |
22 | 20, 21 | sylan9eq 2246 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = (1 · 𝑁)) |
23 | nncn 8992 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
24 | 23 | 3ad2ant3 1022 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
25 | 24 | adantr 276 | . . . . 5 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → 𝑁 ∈ ℂ) |
26 | 25 | mulid2d 8040 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (1 · 𝑁) = 𝑁) |
27 | 22, 26 | eqtrd 2226 | . . 3 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = 𝑁) |
28 | 27 | oveq2d 5935 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))) = (𝐾 gcd 𝑁)) |
29 | 17, 28 | eqtrd 2226 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 1c1 7875 · cmul 7879 ℕcn 8984 ℕ0cn0 9243 ℤcz 9320 gcd cgcd 12082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-sup 7045 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-q 9688 df-rp 9723 df-fz 10078 df-fzo 10212 df-fl 10342 df-mod 10397 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 df-dvds 11934 df-gcd 12083 |
This theorem is referenced by: rplpwr 12167 lgsquad2lem2 15239 |
Copyright terms: Public domain | W3C validator |