ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpmulgcd GIF version

Theorem rpmulgcd 11750
Description: If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rpmulgcd (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))

Proof of Theorem rpmulgcd
StepHypRef Expression
1 gcdmultiple 11744 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾)
213adant2 1001 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾)
32oveq1d 5797 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd (𝑀 · 𝑁)))
4 nnz 9097 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
543ad2ant1 1003 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
6 nnz 9097 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
7 zmulcl 9131 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
84, 6, 7syl2an 287 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ)
983adant2 1001 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ)
10 nnz 9097 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
11 zmulcl 9131 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ)
1210, 6, 11syl2an 287 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ)
13123adant1 1000 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ)
14 gcdass 11739 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
155, 9, 13, 14syl3anc 1217 . . . 4 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
163, 15eqtr3d 2175 . . 3 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
1716adantr 274 . 2 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))))
18 nnnn0 9008 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
19 mulgcdr 11742 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁))
204, 10, 18, 19syl3an 1259 . . . . 5 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁))
21 oveq1 5789 . . . . 5 ((𝐾 gcd 𝑀) = 1 → ((𝐾 gcd 𝑀) · 𝑁) = (1 · 𝑁))
2220, 21sylan9eq 2193 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = (1 · 𝑁))
23 nncn 8752 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24233ad2ant3 1005 . . . . . 6 ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
2524adantr 274 . . . . 5 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → 𝑁 ∈ ℂ)
2625mulid2d 7808 . . . 4 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (1 · 𝑁) = 𝑁)
2722, 26eqtrd 2173 . . 3 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = 𝑁)
2827oveq2d 5798 . 2 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))) = (𝐾 gcd 𝑁))
2917, 28eqtrd 2173 1 (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1332  wcel 1481  (class class class)co 5782  cc 7642  1c1 7645   · cmul 7649  cn 8744  0cn0 9001  cz 9078   gcd cgcd 11671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672
This theorem is referenced by:  rplpwr  11751
  Copyright terms: Public domain W3C validator