Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpmulgcd | GIF version |
Description: If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
rpmulgcd | ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdmultiple 11975 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) | |
2 | 1 | 3adant2 1011 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝐾 · 𝑁)) = 𝐾) |
3 | 2 | oveq1d 5868 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd (𝑀 · 𝑁))) |
4 | nnz 9231 | . . . . . 6 ⊢ (𝐾 ∈ ℕ → 𝐾 ∈ ℤ) | |
5 | 4 | 3ad2ant1 1013 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐾 ∈ ℤ) |
6 | nnz 9231 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
7 | zmulcl 9265 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) | |
8 | 4, 6, 7 | syl2an 287 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
9 | 8 | 3adant2 1011 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 · 𝑁) ∈ ℤ) |
10 | nnz 9231 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
11 | zmulcl 9265 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 · 𝑁) ∈ ℤ) | |
12 | 10, 6, 11 | syl2an 287 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
13 | 12 | 3adant1 1010 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℤ) |
14 | gcdass 11970 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ ∧ (𝑀 · 𝑁) ∈ ℤ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) | |
15 | 5, 9, 13, 14 | syl3anc 1233 | . . . 4 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 gcd (𝐾 · 𝑁)) gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
16 | 3, 15 | eqtr3d 2205 | . . 3 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
17 | 16 | adantr 274 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)))) |
18 | nnnn0 9142 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
19 | mulgcdr 11973 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) | |
20 | 4, 10, 18, 19 | syl3an 1275 | . . . . 5 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = ((𝐾 gcd 𝑀) · 𝑁)) |
21 | oveq1 5860 | . . . . 5 ⊢ ((𝐾 gcd 𝑀) = 1 → ((𝐾 gcd 𝑀) · 𝑁) = (1 · 𝑁)) | |
22 | 20, 21 | sylan9eq 2223 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = (1 · 𝑁)) |
23 | nncn 8886 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
24 | 23 | 3ad2ant3 1015 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ) |
25 | 24 | adantr 274 | . . . . 5 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → 𝑁 ∈ ℂ) |
26 | 25 | mulid2d 7938 | . . . 4 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (1 · 𝑁) = 𝑁) |
27 | 22, 26 | eqtrd 2203 | . . 3 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → ((𝐾 · 𝑁) gcd (𝑀 · 𝑁)) = 𝑁) |
28 | 27 | oveq2d 5869 | . 2 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd ((𝐾 · 𝑁) gcd (𝑀 · 𝑁))) = (𝐾 gcd 𝑁)) |
29 | 17, 28 | eqtrd 2203 | 1 ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 1c1 7775 · cmul 7779 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 gcd cgcd 11897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 |
This theorem is referenced by: rplpwr 11982 |
Copyright terms: Public domain | W3C validator |