ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdvds GIF version

Theorem hashdvds 11897
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1 (𝜑𝑁 ∈ ℕ)
hashdvds.2 (𝜑𝐴 ∈ ℤ)
hashdvds.3 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
hashdvds.4 (𝜑𝐶 ∈ ℤ)
Assertion
Ref Expression
hashdvds (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑁
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem hashdvds
Dummy variables 𝑎 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 9081 . . . . . 6 (𝜑 → 1 ∈ ℤ)
2 hashdvds.3 . . . . . . . . . . 11 (𝜑𝐵 ∈ (ℤ‘(𝐴 − 1)))
3 eluzelz 9335 . . . . . . . . . . 11 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → 𝐵 ∈ ℤ)
42, 3syl 14 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
5 hashdvds.4 . . . . . . . . . 10 (𝜑𝐶 ∈ ℤ)
64, 5zsubcld 9178 . . . . . . . . 9 (𝜑 → (𝐵𝐶) ∈ ℤ)
7 hashdvds.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
8 znq 9416 . . . . . . . . 9 (((𝐵𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐵𝐶) / 𝑁) ∈ ℚ)
96, 7, 8syl2anc 408 . . . . . . . 8 (𝜑 → ((𝐵𝐶) / 𝑁) ∈ ℚ)
109flqcld 10050 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
11 hashdvds.2 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℤ)
12 peano2zm 9092 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1311, 12syl 14 . . . . . . . . . 10 (𝜑 → (𝐴 − 1) ∈ ℤ)
1413, 5zsubcld 9178 . . . . . . . . 9 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ)
15 znq 9416 . . . . . . . . 9 ((((𝐴 − 1) − 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ)
1614, 7, 15syl2anc 408 . . . . . . . 8 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ)
1716flqcld 10050 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ)
1810, 17zsubcld 9178 . . . . . 6 (𝜑 → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ)
19 fzen 9823 . . . . . 6 ((1 ∈ ℤ ∧ ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
201, 18, 17, 19syl3anc 1216 . . . . 5 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))))
21 ax-1cn 7713 . . . . . . 7 1 ∈ ℂ
2217zcnd 9174 . . . . . . 7 (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ)
23 addcom 7899 . . . . . . 7 ((1 ∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2421, 22, 23sylancr 410 . . . . . 6 (𝜑 → (1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1))
2510zcnd 9174 . . . . . . 7 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℂ)
2625, 22npcand 8077 . . . . . 6 (𝜑 → (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵𝐶) / 𝑁)))
2724, 26oveq12d 5792 . . . . 5 (𝜑 → ((1 + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
2820, 27breqtrd 3954 . . . 4 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
2917peano2zd 9176 . . . . . . 7 (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
3029, 10fzfigd 10204 . . . . . 6 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∈ Fin)
3130elexd 2699 . . . . 5 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∈ V)
3211, 4fzfigd 10204 . . . . . . 7 (𝜑 → (𝐴...𝐵) ∈ Fin)
33 elfzelz 9806 . . . . . . . . . . . 12 (𝑎 ∈ (𝐴...𝐵) → 𝑎 ∈ ℤ)
3433adantl 275 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴...𝐵)) → 𝑎 ∈ ℤ)
355adantr 274 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴...𝐵)) → 𝐶 ∈ ℤ)
3634, 35zsubcld 9178 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐴...𝐵)) → (𝑎𝐶) ∈ ℤ)
37 dvdsdc 11501 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑎𝐶) ∈ ℤ) → DECID 𝑁 ∥ (𝑎𝐶))
387, 36, 37syl2an2r 584 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝐴...𝐵)) → DECID 𝑁 ∥ (𝑎𝐶))
3938ralrimiva 2505 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑎𝐶))
40 oveq1 5781 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥𝐶) = (𝑎𝐶))
4140breq2d 3941 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (𝑎𝐶)))
4241dcbid 823 . . . . . . . . 9 (𝑥 = 𝑎 → (DECID 𝑁 ∥ (𝑥𝐶) ↔ DECID 𝑁 ∥ (𝑎𝐶)))
4342cbvralv 2654 . . . . . . . 8 (∀𝑥 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑥𝐶) ↔ ∀𝑎 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑎𝐶))
4439, 43sylibr 133 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑥𝐶))
4532, 44ssfirab 6822 . . . . . 6 (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin)
4645elexd 2699 . . . . 5 (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ V)
47 elfzle1 9807 . . . . . . . . . . . . . 14 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
4847adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)
49 elfzelz 9806 . . . . . . . . . . . . . 14 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ∈ ℤ)
50 zltp1le 9108 . . . . . . . . . . . . . 14 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
5117, 49, 50syl2an 287 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧))
5248, 51mpbird 166 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)
53 flqlt 10056 . . . . . . . . . . . . 13 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ ∧ 𝑧 ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
5416, 49, 53syl2an 287 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧))
5552, 54mpbird 166 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧)
5614zred 9173 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ)
5756adantr 274 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
5849adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℤ)
5958zred 9173 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℝ)
607nnred 8733 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
617nngt0d 8764 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝑁)
6260, 61jca 304 . . . . . . . . . . . . 13 (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
6362adantr 274 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
64 ltdivmul2 8636 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
6557, 59, 63, 64syl3anc 1216 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)))
6655, 65mpbid 146 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))
6713zred 9173 . . . . . . . . . . . 12 (𝜑 → (𝐴 − 1) ∈ ℝ)
6867adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ)
695zred 9173 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
7069adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℝ)
717nnzd 9172 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℤ)
7271adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∈ ℤ)
7358, 72zmulcld 9179 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ)
7473zred 9173 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ)
7568, 70, 74ltsubaddd 8303 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
7666, 75mpbid 146 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))
775adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℤ)
7873, 77zaddcld 9177 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ)
79 zlem1lt 9110 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
8011, 78, 79syl2an2r 584 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)))
8176, 80mpbird 166 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶))
82 elfzle2 9808 . . . . . . . . . . . 12 (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
8382adantl 275 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁)))
84 flqge 10055 . . . . . . . . . . . 12 ((((𝐵𝐶) / 𝑁) ∈ ℚ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
859, 49, 84syl2an 287 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵𝐶) / 𝑁))))
8683, 85mpbird 166 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵𝐶) / 𝑁))
876zred 9173 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐶) ∈ ℝ)
8887adantr 274 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝐵𝐶) ∈ ℝ)
89 lemuldiv 8639 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
9059, 88, 63, 89syl3anc 1216 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵𝐶) ↔ 𝑧 ≤ ((𝐵𝐶) / 𝑁)))
9186, 90mpbird 166 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵𝐶))
924zred 9173 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
9392adantr 274 . . . . . . . . . 10 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℝ)
94 leaddsub 8200 . . . . . . . . . 10 (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
9574, 70, 93, 94syl3anc 1216 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵𝐶)))
9691, 95mpbird 166 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)
9711adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐴 ∈ ℤ)
984adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐵 ∈ ℤ)
99 elfz 9796 . . . . . . . . 9 ((((𝑧 · 𝑁) + 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)))
10078, 97, 98, 99syl3anc 1216 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵)))
10181, 96, 100mpbir2and 928 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵))
102 dvdsmul2 11516 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁))
10358, 72, 102syl2anc 408 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁))
10473zcnd 9174 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ)
1055zcnd 9174 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
106105adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝐶 ∈ ℂ)
107104, 106pncand 8074 . . . . . . . 8 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁))
108103, 107breqtrrd 3956 . . . . . . 7 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))
109 oveq1 5781 . . . . . . . . 9 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶))
110109breq2d 3941 . . . . . . . 8 (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)))
111110elrab 2840 . . . . . . 7 (((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ↔ (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)))
112101, 108, 111sylanbrc 413 . . . . . 6 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
113112ex 114 . . . . 5 (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
114 oveq1 5781 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐶) = (𝑦𝐶))
115114breq2d 3941 . . . . . . 7 (𝑥 = 𝑦 → (𝑁 ∥ (𝑥𝐶) ↔ 𝑁 ∥ (𝑦𝐶)))
116115elrab 2840 . . . . . 6 (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))
11767adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) ∈ ℝ)
118 elfzelz 9806 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
119118ad2antrl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℤ)
120119zred 9173 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℝ)
12169adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℝ)
122 elfzle1 9807 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝐴...𝐵) → 𝐴𝑦)
123122ad2antrl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐴𝑦)
124 zlem1lt 9110 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
12511, 119, 124syl2an2r 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴𝑦 ↔ (𝐴 − 1) < 𝑦))
126123, 125mpbid 146 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐴 − 1) < 𝑦)
127117, 120, 121, 126ltsub1dd 8319 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦𝐶))
12856adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ)
1295adantr 274 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐶 ∈ ℤ)
130119, 129zsubcld 9178 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℤ)
131130zred 9173 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℝ)
13262adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁))
133 ltdiv1 8626 . . . . . . . . . . . 12 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
134128, 131, 132, 133syl3anc 1216 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁)))
135127, 134mpbid 146 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁))
136 simprr 521 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∥ (𝑦𝐶))
13771adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ∈ ℤ)
1387nnne0d 8765 . . . . . . . . . . . . . 14 (𝜑𝑁 ≠ 0)
139138adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑁 ≠ 0)
140 dvdsval2 11496 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
141137, 139, 130, 140syl3anc 1216 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑁 ∥ (𝑦𝐶) ↔ ((𝑦𝐶) / 𝑁) ∈ ℤ))
142136, 141mpbid 146 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ ℤ)
143 flqlt 10056 . . . . . . . . . . 11 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
14416, 142, 143syl2an2r 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁)))
145135, 144mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁))
146 zltp1le 9108 . . . . . . . . . 10 (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
14717, 142, 146syl2an2r 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁)))
148145, 147mpbid 146 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁))
14992adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝐵 ∈ ℝ)
150 elfzle2 9808 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴...𝐵) → 𝑦𝐵)
151150ad2antrl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦𝐵)
152120, 149, 121, 151lesub1dd 8323 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ≤ (𝐵𝐶))
15387adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝐵𝐶) ∈ ℝ)
154 lediv1 8627 . . . . . . . . . . 11 (((𝑦𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
155131, 153, 132, 154syl3anc 1216 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) ≤ (𝐵𝐶) ↔ ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
156152, 155mpbid 146 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
157 flqge 10055 . . . . . . . . . 10 ((((𝐵𝐶) / 𝑁) ∈ ℚ ∧ ((𝑦𝐶) / 𝑁) ∈ ℤ) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
1589, 142, 157syl2an2r 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝑦𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁))))
159156, 158mpbid 146 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))
16029adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ)
16110adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ)
162 elfz 9796 . . . . . . . . 9 ((((𝑦𝐶) / 𝑁) ∈ ℤ ∧ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ ∧ (⌊‘((𝐵𝐶) / 𝑁)) ∈ ℤ) → (((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁) ∧ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))))
163142, 160, 161, 162syl3anc 1216 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦𝐶) / 𝑁) ∧ ((𝑦𝐶) / 𝑁) ≤ (⌊‘((𝐵𝐶) / 𝑁)))))
164148, 159, 163mpbir2and 928 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))))
165164ex 114 . . . . . 6 (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)) → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
166116, 165syl5bi 151 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} → ((𝑦𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))))
167116anbi2i 452 . . . . . . 7 ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))))
168130zcnd 9174 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → (𝑦𝐶) ∈ ℂ)
169168adantrl 469 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑦𝐶) ∈ ℂ)
17058zcnd 9174 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁)))) → 𝑧 ∈ ℂ)
171170adantrr 470 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑧 ∈ ℂ)
1727nncnd 8734 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
173172adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 ∈ ℂ)
1747nnap0d 8766 . . . . . . . . . . 11 (𝜑𝑁 # 0)
175174adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑁 # 0)
176169, 171, 173, 175divmulap3d 8585 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ (𝑦𝐶) = (𝑧 · 𝑁)))
177119zcnd 9174 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶))) → 𝑦 ∈ ℂ)
178177adantrl 469 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝑦 ∈ ℂ)
179105adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → 𝐶 ∈ ℂ)
180104adantrr 470 . . . . . . . . . 10 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 · 𝑁) ∈ ℂ)
181178, 179, 180subadd2d 8092 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → ((𝑦𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
182176, 181bitrd 187 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (((𝑦𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦))
183 eqcom 2141 . . . . . . . 8 (𝑧 = ((𝑦𝐶) / 𝑁) ↔ ((𝑦𝐶) / 𝑁) = 𝑧)
184 eqcom 2141 . . . . . . . 8 (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)
185182, 183, 1843bitr4g 222 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦𝐶)))) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
186167, 185sylan2b 285 . . . . . 6 ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))
187186ex 114 . . . . 5 (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (𝑧 = ((𝑦𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))))
18831, 46, 113, 166, 187en3d 6663 . . . 4 (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
189 entr 6678 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
19028, 188, 189syl2anc 408 . . 3 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)})
1911, 18fzfigd 10204 . . . 4 (𝜑 → (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin)
192 hashen 10530 . . . 4 (((1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)} ∈ Fin) → ((♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
193191, 45, 192syl2anc 408 . . 3 (𝜑 → ((♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) ↔ (1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
194190, 193mpbird 166 . 2 (𝜑 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}))
195 eluzle 9338 . . . . . . 7 (𝐵 ∈ (ℤ‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵)
1962, 195syl 14 . . . . . 6 (𝜑 → (𝐴 − 1) ≤ 𝐵)
197 zre 9058 . . . . . . . 8 ((𝐴 − 1) ∈ ℤ → (𝐴 − 1) ∈ ℝ)
198 zre 9058 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
199 zre 9058 . . . . . . . 8 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
200 lesub1 8218 . . . . . . . 8 (((𝐴 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
201197, 198, 199, 200syl3an 1258 . . . . . . 7 (((𝐴 − 1) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
20213, 4, 5, 201syl3anc 1216 . . . . . 6 (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶)))
203196, 202mpbid 146 . . . . 5 (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶))
204 lediv1 8627 . . . . . 6 ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
20556, 87, 62, 204syl3anc 1216 . . . . 5 (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)))
206203, 205mpbid 146 . . . 4 (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁))
207 flqword2 10062 . . . 4 (((((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ ∧ ((𝐵𝐶) / 𝑁) ∈ ℚ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵𝐶) / 𝑁)) → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
20816, 9, 206, 207syl3anc 1216 . . 3 (𝜑 → (⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
209 uznn0sub 9357 . . 3 ((⌊‘((𝐵𝐶) / 𝑁)) ∈ (ℤ‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0)
210 hashfz1 10529 . . 3 (((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℕ0 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
211208, 209, 2103syl 17 . 2 (𝜑 → (♯‘(1...((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
212194, 211eqtr3d 2174 1 (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥𝐶)}) = ((⌊‘((𝐵𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308  wral 2416  {crab 2420   class class class wbr 3929  cfv 5123  (class class class)co 5774  cen 6632  Fincfn 6634  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933   # cap 8343   / cdiv 8432  cn 8720  0cn0 8977  cz 9054  cuz 9326  cq 9411  ...cfz 9790  cfl 10041  chash 10521  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-ihash 10522  df-dvds 11494
This theorem is referenced by:  phiprmpw  11898
  Copyright terms: Public domain W3C validator