| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 9353 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
| 2 | | hashdvds.3 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ (ℤ≥‘(𝐴 − 1))) |
| 3 | | eluzelz 9610 |
. . . . . . . . . . 11
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → 𝐵 ∈ ℤ) |
| 4 | 2, 3 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℤ) |
| 5 | | hashdvds.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 6 | 4, 5 | zsubcld 9453 |
. . . . . . . . 9
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℤ) |
| 7 | | hashdvds.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 8 | | znq 9698 |
. . . . . . . . 9
⊢ (((𝐵 − 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐵 − 𝐶) / 𝑁) ∈ ℚ) |
| 9 | 6, 7, 8 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ((𝐵 − 𝐶) / 𝑁) ∈ ℚ) |
| 10 | 9 | flqcld 10367 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 11 | | hashdvds.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 12 | | peano2zm 9364 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
| 13 | 11, 12 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 − 1) ∈ ℤ) |
| 14 | 13, 5 | zsubcld 9453 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℤ) |
| 15 | | znq 9698 |
. . . . . . . . 9
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ) |
| 16 | 14, 7, 15 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ∈ ℚ) |
| 17 | 16 | flqcld 10367 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ) |
| 18 | 10, 17 | zsubcld 9453 |
. . . . . 6
⊢ (𝜑 → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ) |
| 19 | | fzen 10118 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈ ℤ ∧
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)) ∈ ℤ) →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 20 | 1, 18, 17, 19 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) |
| 21 | | ax-1cn 7972 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 22 | 17 | zcnd 9449 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) |
| 23 | | addcom 8163 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℂ) → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 24 | 21, 22, 23 | sylancr 414 |
. . . . . 6
⊢ (𝜑 → (1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) = ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)) |
| 25 | 10 | zcnd 9449 |
. . . . . . 7
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℂ) |
| 26 | 25, 22 | npcand 8341 |
. . . . . 6
⊢ (𝜑 → (((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) = (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 27 | 24, 26 | oveq12d 5940 |
. . . . 5
⊢ (𝜑 → ((1 +
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))...(((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) + (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) = (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 28 | 20, 27 | breqtrd 4059 |
. . . 4
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁)))) |
| 29 | 17 | peano2zd 9451 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 30 | 29, 10 | fzfigd 10523 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∈ Fin) |
| 31 | 30 | elexd 2776 |
. . . . 5
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∈ V) |
| 32 | 11, 4 | fzfigd 10523 |
. . . . . . 7
⊢ (𝜑 → (𝐴...𝐵) ∈ Fin) |
| 33 | | elfzelz 10100 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ (𝐴...𝐵) → 𝑎 ∈ ℤ) |
| 34 | 33 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐴...𝐵)) → 𝑎 ∈ ℤ) |
| 35 | 5 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐴...𝐵)) → 𝐶 ∈ ℤ) |
| 36 | 34, 35 | zsubcld 9453 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐴...𝐵)) → (𝑎 − 𝐶) ∈ ℤ) |
| 37 | | dvdsdc 11963 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑎 − 𝐶) ∈ ℤ) →
DECID 𝑁
∥ (𝑎 − 𝐶)) |
| 38 | 7, 36, 37 | syl2an2r 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐴...𝐵)) → DECID 𝑁 ∥ (𝑎 − 𝐶)) |
| 39 | 38 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑎 − 𝐶)) |
| 40 | | oveq1 5929 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑎 → (𝑥 − 𝐶) = (𝑎 − 𝐶)) |
| 41 | 40 | breq2d 4045 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (𝑎 − 𝐶))) |
| 42 | 41 | dcbid 839 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (DECID 𝑁 ∥ (𝑥 − 𝐶) ↔ DECID 𝑁 ∥ (𝑎 − 𝐶))) |
| 43 | 42 | cbvralv 2729 |
. . . . . . . 8
⊢
(∀𝑥 ∈
(𝐴...𝐵)DECID 𝑁 ∥ (𝑥 − 𝐶) ↔ ∀𝑎 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑎 − 𝐶)) |
| 44 | 39, 43 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝐴...𝐵)DECID 𝑁 ∥ (𝑥 − 𝐶)) |
| 45 | 32, 44 | ssfirab 6997 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) |
| 46 | 45 | elexd 2776 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ V) |
| 47 | | elfzle1 10102 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) + 1) ≤ 𝑧) |
| 48 | 47 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧) |
| 49 | | elfzelz 10100 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ∈ ℤ) |
| 50 | | zltp1le 9380 |
. . . . . . . . . . . . . 14
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 51 | 17, 49, 50 | syl2an 289 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧 ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ 𝑧)) |
| 52 | 48, 51 | mpbird 167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧) |
| 53 | | flqlt 10373 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℚ ∧ 𝑧 ∈ ℤ) →
((((𝐴 − 1) −
𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 54 | 16, 49, 53 | syl2an 289 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < 𝑧)) |
| 55 | 52, 54 | mpbird 167 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧) |
| 56 | 14 | zred 9448 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 57 | 56 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 58 | 49 | adantl 277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℤ) |
| 59 | 58 | zred 9448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℝ) |
| 60 | 7 | nnred 9003 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 61 | 7 | nngt0d 9034 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 𝑁) |
| 62 | 60, 61 | jca 306 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 63 | 62 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 64 | | ltdivmul2 8905 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 <
𝑁)) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 65 | 57, 59, 63, 64 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < 𝑧 ↔ ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁))) |
| 66 | 55, 65 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁)) |
| 67 | 13 | zred 9448 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 − 1) ∈ ℝ) |
| 68 | 67 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) ∈ ℝ) |
| 69 | 5 | zred 9448 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 70 | 69 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℝ) |
| 71 | 7 | nnzd 9447 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 72 | 71 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∈ ℤ) |
| 73 | 58, 72 | zmulcld 9454 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℤ) |
| 74 | 73 | zred 9448 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℝ) |
| 75 | 68, 70, 74 | ltsubaddd 8568 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝐴 − 1) − 𝐶) < (𝑧 · 𝑁) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 76 | 66, 75 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶)) |
| 77 | 5 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℤ) |
| 78 | 73, 77 | zaddcld 9452 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) |
| 79 | | zlem1lt 9382 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝑧 · 𝑁) + 𝐶) ∈ ℤ) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 80 | 11, 78, 79 | syl2an2r 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ↔ (𝐴 − 1) < ((𝑧 · 𝑁) + 𝐶))) |
| 81 | 76, 80 | mpbird 167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ≤ ((𝑧 · 𝑁) + 𝐶)) |
| 82 | | elfzle2 10103 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 83 | 82 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 84 | | flqge 10372 |
. . . . . . . . . . . 12
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℚ ∧ 𝑧 ∈ ℤ) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 85 | 9, 49, 84 | syl2an 289 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 ≤ ((𝐵 − 𝐶) / 𝑁) ↔ 𝑧 ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 86 | 83, 85 | mpbird 167 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 87 | 6 | zred 9448 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 𝐶) ∈ ℝ) |
| 88 | 87 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝐵 − 𝐶) ∈ ℝ) |
| 89 | | lemuldiv 8908 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 90 | 59, 88, 63, 89 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) ≤ (𝐵 − 𝐶) ↔ 𝑧 ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 91 | 86, 90 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ≤ (𝐵 − 𝐶)) |
| 92 | 4 | zred 9448 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 93 | 92 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℝ) |
| 94 | | leaddsub 8465 |
. . . . . . . . . 10
⊢ (((𝑧 · 𝑁) ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 95 | 74, 70, 93, 94 | syl3anc 1249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ≤ 𝐵 ↔ (𝑧 · 𝑁) ≤ (𝐵 − 𝐶))) |
| 96 | 91, 95 | mpbird 167 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵) |
| 97 | 11 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐴 ∈ ℤ) |
| 98 | 4 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐵 ∈ ℤ) |
| 99 | | elfz 10089 |
. . . . . . . . 9
⊢ ((((𝑧 · 𝑁) + 𝐶) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵))) |
| 100 | 78, 97, 98, 99 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ↔ (𝐴 ≤ ((𝑧 · 𝑁) + 𝐶) ∧ ((𝑧 · 𝑁) + 𝐶) ≤ 𝐵))) |
| 101 | 81, 96, 100 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵)) |
| 102 | | dvdsmul2 11979 |
. . . . . . . . 9
⊢ ((𝑧 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 103 | 58, 72, 102 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (𝑧 · 𝑁)) |
| 104 | 73 | zcnd 9449 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 105 | 5 | zcnd 9449 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 106 | 105 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝐶 ∈ ℂ) |
| 107 | 104, 106 | pncand 8338 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → (((𝑧 · 𝑁) + 𝐶) − 𝐶) = (𝑧 · 𝑁)) |
| 108 | 103, 107 | breqtrrd 4061 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 109 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑥 − 𝐶) = (((𝑧 · 𝑁) + 𝐶) − 𝐶)) |
| 110 | 109 | breq2d 4045 |
. . . . . . . 8
⊢ (𝑥 = ((𝑧 · 𝑁) + 𝐶) → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))) |
| 111 | 110 | elrab 2920 |
. . . . . . 7
⊢ (((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ↔ (((𝑧 · 𝑁) + 𝐶) ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (((𝑧 · 𝑁) + 𝐶) − 𝐶))) |
| 112 | 101, 108,
111 | sylanbrc 417 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 113 | 112 | ex 115 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) → ((𝑧 · 𝑁) + 𝐶) ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 114 | | oveq1 5929 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 − 𝐶) = (𝑦 − 𝐶)) |
| 115 | 114 | breq2d 4045 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑁 ∥ (𝑥 − 𝐶) ↔ 𝑁 ∥ (𝑦 − 𝐶))) |
| 116 | 115 | elrab 2920 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ↔ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) |
| 117 | 67 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) ∈ ℝ) |
| 118 | | elfzelz 10100 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ) |
| 119 | 118 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℤ) |
| 120 | 119 | zred 9448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℝ) |
| 121 | 69 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℝ) |
| 122 | | elfzle1 10102 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝐴 ≤ 𝑦) |
| 123 | 122 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐴 ≤ 𝑦) |
| 124 | | zlem1lt 9382 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 125 | 11, 119, 124 | syl2an2r 595 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 ≤ 𝑦 ↔ (𝐴 − 1) < 𝑦)) |
| 126 | 123, 125 | mpbid 147 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐴 − 1) < 𝑦) |
| 127 | 117, 120,
121, 126 | ltsub1dd 8584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶)) |
| 128 | 56 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝐴 − 1) − 𝐶) ∈ ℝ) |
| 129 | 5 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐶 ∈ ℤ) |
| 130 | 119, 129 | zsubcld 9453 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℤ) |
| 131 | 130 | zred 9448 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℝ) |
| 132 | 62 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∈ ℝ ∧ 0 < 𝑁)) |
| 133 | | ltdiv1 8895 |
. . . . . . . . . . . 12
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝑦 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 134 | 128, 131,
132, 133 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) < (𝑦 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁))) |
| 135 | 127, 134 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁)) |
| 136 | | simprr 531 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∥ (𝑦 − 𝐶)) |
| 137 | 71 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ∈ ℤ) |
| 138 | 7 | nnne0d 9035 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ≠ 0) |
| 139 | 138 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑁 ≠ 0) |
| 140 | | dvdsval2 11955 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ (𝑦 − 𝐶) ∈ ℤ) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 141 | 137, 139,
130, 140 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑁 ∥ (𝑦 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ)) |
| 142 | 136, 141 | mpbid 147 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) |
| 143 | | flqlt 10373 |
. . . . . . . . . . 11
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℚ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 144 | 16, 142, 143 | syl2an2r 595 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((((𝐴 − 1) − 𝐶) / 𝑁) < ((𝑦 − 𝐶) / 𝑁) ↔ (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁))) |
| 145 | 135, 144 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁)) |
| 146 | | zltp1le 9380 |
. . . . . . . . . 10
⊢
(((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) ∈ ℤ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) →
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 147 | 17, 142, 146 | syl2an2r 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) < ((𝑦 − 𝐶) / 𝑁) ↔ ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁))) |
| 148 | 145, 147 | mpbid 147 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁)) |
| 149 | 92 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝐵 ∈ ℝ) |
| 150 | | elfzle2 10103 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (𝐴...𝐵) → 𝑦 ≤ 𝐵) |
| 151 | 150 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ≤ 𝐵) |
| 152 | 120, 149,
121, 151 | lesub1dd 8588 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ≤ (𝐵 − 𝐶)) |
| 153 | 87 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝐵 − 𝐶) ∈ ℝ) |
| 154 | | lediv1 8896 |
. . . . . . . . . . 11
⊢ (((𝑦 − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 155 | 131, 153,
132, 154 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) ≤ (𝐵 − 𝐶) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 156 | 152, 155 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 157 | | flqge 10372 |
. . . . . . . . . 10
⊢ ((((𝐵 − 𝐶) / 𝑁) ∈ ℚ ∧ ((𝑦 − 𝐶) / 𝑁) ∈ ℤ) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 158 | 9, 142, 157 | syl2an2r 595 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝑦 − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 159 | 156, 158 | mpbid 147 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))) |
| 160 | 29 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ∈ ℤ) |
| 161 | 10 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈ ℤ) |
| 162 | | elfz 10089 |
. . . . . . . . 9
⊢ ((((𝑦 − 𝐶) / 𝑁) ∈ ℤ ∧
((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) + 1) ∈ ℤ
∧ (⌊‘((𝐵
− 𝐶) / 𝑁)) ∈ ℤ) →
(((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁) ∧ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 163 | 142, 160,
161, 162 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ↔ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1) ≤ ((𝑦 − 𝐶) / 𝑁) ∧ ((𝑦 − 𝐶) / 𝑁) ≤ (⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 164 | 148, 159,
163 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) |
| 165 | 164 | ex 115 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)) → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 166 | 116, 165 | biimtrid 152 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} → ((𝑦 − 𝐶) / 𝑁) ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))))) |
| 167 | 116 | anbi2i 457 |
. . . . . . 7
⊢ ((𝑧 ∈
(((⌊‘(((𝐴
− 1) − 𝐶) /
𝑁)) +
1)...(⌊‘((𝐵
− 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) |
| 168 | 130 | zcnd 9449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → (𝑦 − 𝐶) ∈ ℂ) |
| 169 | 168 | adantrl 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑦 − 𝐶) ∈ ℂ) |
| 170 | 58 | zcnd 9449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁)))) → 𝑧 ∈ ℂ) |
| 171 | 170 | adantrr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑧 ∈ ℂ) |
| 172 | 7 | nncnd 9004 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 173 | 172 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 ∈ ℂ) |
| 174 | 7 | nnap0d 9036 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 # 0) |
| 175 | 174 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑁 # 0) |
| 176 | 169, 171,
173, 175 | divmulap3d 8852 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ (𝑦 − 𝐶) = (𝑧 · 𝑁))) |
| 177 | 119 | zcnd 9449 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶))) → 𝑦 ∈ ℂ) |
| 178 | 177 | adantrl 478 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝑦 ∈ ℂ) |
| 179 | 105 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → 𝐶 ∈ ℂ) |
| 180 | 104 | adantrr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 · 𝑁) ∈ ℂ) |
| 181 | 178, 179,
180 | subadd2d 8356 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → ((𝑦 − 𝐶) = (𝑧 · 𝑁) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 182 | 176, 181 | bitrd 188 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (((𝑦 − 𝐶) / 𝑁) = 𝑧 ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦)) |
| 183 | | eqcom 2198 |
. . . . . . . 8
⊢ (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ ((𝑦 − 𝐶) / 𝑁) = 𝑧) |
| 184 | | eqcom 2198 |
. . . . . . . 8
⊢ (𝑦 = ((𝑧 · 𝑁) + 𝐶) ↔ ((𝑧 · 𝑁) + 𝐶) = 𝑦) |
| 185 | 182, 183,
184 | 3bitr4g 223 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (𝑦 ∈ (𝐴...𝐵) ∧ 𝑁 ∥ (𝑦 − 𝐶)))) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 186 | 167, 185 | sylan2b 287 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶))) |
| 187 | 186 | ex 115 |
. . . . 5
⊢ (𝜑 → ((𝑧 ∈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ 𝑦 ∈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (𝑧 = ((𝑦 − 𝐶) / 𝑁) ↔ 𝑦 = ((𝑧 · 𝑁) + 𝐶)))) |
| 188 | 31, 46, 113, 166, 187 | en3d 6828 |
. . . 4
⊢ (𝜑 → (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 189 | | entr 6843 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ∧ (((⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)) + 1)...(⌊‘((𝐵 − 𝐶) / 𝑁))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) → (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 190 | 28, 188, 189 | syl2anc 411 |
. . 3
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) |
| 191 | 1, 18 | fzfigd 10523 |
. . . 4
⊢ (𝜑 →
(1...((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁)))) ∈
Fin) |
| 192 | | hashen 10876 |
. . . 4
⊢
(((1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ∈ Fin ∧ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)} ∈ Fin) →
((♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 193 | 191, 45, 192 | syl2anc 411 |
. . 3
⊢ (𝜑 →
((♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) ↔ (1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) ≈ {𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 194 | 190, 193 | mpbird 167 |
. 2
⊢ (𝜑 →
(♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)})) |
| 195 | | eluzle 9613 |
. . . . . . 7
⊢ (𝐵 ∈
(ℤ≥‘(𝐴 − 1)) → (𝐴 − 1) ≤ 𝐵) |
| 196 | 2, 195 | syl 14 |
. . . . . 6
⊢ (𝜑 → (𝐴 − 1) ≤ 𝐵) |
| 197 | | zre 9330 |
. . . . . . . 8
⊢ ((𝐴 − 1) ∈ ℤ
→ (𝐴 − 1) ∈
ℝ) |
| 198 | | zre 9330 |
. . . . . . . 8
⊢ (𝐵 ∈ ℤ → 𝐵 ∈
ℝ) |
| 199 | | zre 9330 |
. . . . . . . 8
⊢ (𝐶 ∈ ℤ → 𝐶 ∈
ℝ) |
| 200 | | lesub1 8483 |
. . . . . . . 8
⊢ (((𝐴 − 1) ∈ ℝ ∧
𝐵 ∈ ℝ ∧
𝐶 ∈ ℝ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 201 | 197, 198,
199, 200 | syl3an 1291 |
. . . . . . 7
⊢ (((𝐴 − 1) ∈ ℤ ∧
𝐵 ∈ ℤ ∧
𝐶 ∈ ℤ) →
((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 202 | 13, 4, 5, 201 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → ((𝐴 − 1) ≤ 𝐵 ↔ ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶))) |
| 203 | 196, 202 | mpbid 147 |
. . . . 5
⊢ (𝜑 → ((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶)) |
| 204 | | lediv1 8896 |
. . . . . 6
⊢ ((((𝐴 − 1) − 𝐶) ∈ ℝ ∧ (𝐵 − 𝐶) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 205 | 56, 87, 62, 204 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) ≤ (𝐵 − 𝐶) ↔ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁))) |
| 206 | 203, 205 | mpbid 147 |
. . . 4
⊢ (𝜑 → (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) |
| 207 | | flqword2 10379 |
. . . 4
⊢
(((((𝐴 − 1)
− 𝐶) / 𝑁) ∈ ℚ ∧ ((𝐵 − 𝐶) / 𝑁) ∈ ℚ ∧ (((𝐴 − 1) − 𝐶) / 𝑁) ≤ ((𝐵 − 𝐶) / 𝑁)) → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 208 | 16, 9, 206, 207 | syl3anc 1249 |
. . 3
⊢ (𝜑 → (⌊‘((𝐵 − 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 209 | | uznn0sub 9633 |
. . 3
⊢
((⌊‘((𝐵
− 𝐶) / 𝑁)) ∈
(ℤ≥‘(⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) → ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))) ∈
ℕ0) |
| 210 | | hashfz1 10875 |
. . 3
⊢
(((⌊‘((𝐵
− 𝐶) / 𝑁)) −
(⌊‘(((𝐴 −
1) − 𝐶) / 𝑁))) ∈ ℕ0
→ (♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 211 | 208, 209,
210 | 3syl 17 |
. 2
⊢ (𝜑 →
(♯‘(1...((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁))))) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |
| 212 | 194, 211 | eqtr3d 2231 |
1
⊢ (𝜑 → (♯‘{𝑥 ∈ (𝐴...𝐵) ∣ 𝑁 ∥ (𝑥 − 𝐶)}) = ((⌊‘((𝐵 − 𝐶) / 𝑁)) − (⌊‘(((𝐴 − 1) − 𝐶) / 𝑁)))) |