| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sratsetg | GIF version | ||
| Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
| srapart.ex | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| sratsetg | ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srapart.a | . 2 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
| 2 | srapart.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
| 3 | srapart.ex | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | tsetslid 13135 | . 2 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
| 5 | slotstnscsi 13142 | . . . 4 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | |
| 6 | 5 | simp1i 1009 | . . 3 ⊢ (TopSet‘ndx) ≠ (Scalar‘ndx) |
| 7 | 6 | necomi 2463 | . 2 ⊢ (Scalar‘ndx) ≠ (TopSet‘ndx) |
| 8 | 5 | simp2i 1010 | . . 3 ⊢ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) |
| 9 | 8 | necomi 2463 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (TopSet‘ndx) |
| 10 | 5 | simp3i 1011 | . . 3 ⊢ (TopSet‘ndx) ≠ (·𝑖‘ndx) |
| 11 | 10 | necomi 2463 | . 2 ⊢ (·𝑖‘ndx) ≠ (TopSet‘ndx) |
| 12 | 1, 2, 3, 4, 7, 9, 11 | sralemg 14315 | 1 ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ⊆ wss 3174 ‘cfv 5290 ndxcnx 12944 Basecbs 12947 Scalarcsca 13027 ·𝑠 cvsca 13028 ·𝑖cip 13029 TopSetcts 13030 subringAlg csra 14310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-9 9137 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-mulr 13038 df-sca 13040 df-vsca 13041 df-ip 13042 df-tset 13043 df-sra 14312 |
| This theorem is referenced by: sratopng 14324 |
| Copyright terms: Public domain | W3C validator |