![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sratsetg | GIF version |
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
srapart.a | ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
srapart.s | ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) |
srapart.ex | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
Ref | Expression |
---|---|
sratsetg | ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | . 2 ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) | |
2 | srapart.s | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) | |
3 | srapart.ex | . 2 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | tsetslid 12699 | . 2 ⊢ (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ) | |
5 | slotstnscsi 12706 | . . . 4 ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx)) | |
6 | 5 | simp1i 1008 | . . 3 ⊢ (TopSet‘ndx) ≠ (Scalar‘ndx) |
7 | 6 | necomi 2445 | . 2 ⊢ (Scalar‘ndx) ≠ (TopSet‘ndx) |
8 | 5 | simp2i 1009 | . . 3 ⊢ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) |
9 | 8 | necomi 2445 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (TopSet‘ndx) |
10 | 5 | simp3i 1010 | . . 3 ⊢ (TopSet‘ndx) ≠ (·𝑖‘ndx) |
11 | 10 | necomi 2445 | . 2 ⊢ (·𝑖‘ndx) ≠ (TopSet‘ndx) |
12 | 1, 2, 3, 4, 7, 9, 11 | sralemg 13754 | 1 ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 ⊆ wss 3144 ‘cfv 5235 ndxcnx 12509 Basecbs 12512 Scalarcsca 12592 ·𝑠 cvsca 12593 ·𝑖cip 12594 TopSetcts 12595 subringAlg csra 13749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-pre-ltirr 7953 ax-pre-lttrn 7955 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-pnf 8024 df-mnf 8025 df-ltxr 8027 df-inn 8950 df-2 9008 df-3 9009 df-4 9010 df-5 9011 df-6 9012 df-7 9013 df-8 9014 df-9 9015 df-ndx 12515 df-slot 12516 df-base 12518 df-sets 12519 df-iress 12520 df-mulr 12603 df-sca 12605 df-vsca 12606 df-ip 12607 df-tset 12608 df-sra 13751 |
This theorem is referenced by: sratopng 13763 |
Copyright terms: Public domain | W3C validator |