ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sratsetg GIF version

Theorem sratsetg 14001
Description: Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
srapart.a (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
srapart.s (𝜑𝑆 ⊆ (Base‘𝑊))
srapart.ex (𝜑𝑊𝑋)
Assertion
Ref Expression
sratsetg (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))

Proof of Theorem sratsetg
StepHypRef Expression
1 srapart.a . 2 (𝜑𝐴 = ((subringAlg ‘𝑊)‘𝑆))
2 srapart.s . 2 (𝜑𝑆 ⊆ (Base‘𝑊))
3 srapart.ex . 2 (𝜑𝑊𝑋)
4 tsetslid 12865 . 2 (TopSet = Slot (TopSet‘ndx) ∧ (TopSet‘ndx) ∈ ℕ)
5 slotstnscsi 12872 . . . 4 ((TopSet‘ndx) ≠ (Scalar‘ndx) ∧ (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (TopSet‘ndx) ≠ (·𝑖‘ndx))
65simp1i 1008 . . 3 (TopSet‘ndx) ≠ (Scalar‘ndx)
76necomi 2452 . 2 (Scalar‘ndx) ≠ (TopSet‘ndx)
85simp2i 1009 . . 3 (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx)
98necomi 2452 . 2 ( ·𝑠 ‘ndx) ≠ (TopSet‘ndx)
105simp3i 1010 . . 3 (TopSet‘ndx) ≠ (·𝑖‘ndx)
1110necomi 2452 . 2 (·𝑖‘ndx) ≠ (TopSet‘ndx)
121, 2, 3, 4, 7, 9, 11sralemg 13994 1 (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wne 2367  wss 3157  cfv 5258  ndxcnx 12675  Basecbs 12678  Scalarcsca 12758   ·𝑠 cvsca 12759  ·𝑖cip 12760  TopSetcts 12761  subringAlg csra 13989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-tset 12774  df-sra 13991
This theorem is referenced by:  sratopng  14003
  Copyright terms: Public domain W3C validator