Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zextlt | GIF version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextlt | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltlem1 9256 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) | |
2 | 1 | adantrr 476 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) |
3 | zltlem1 9256 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) | |
4 | 3 | adantrl 475 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
5 | 2, 4 | bibi12d 234 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
6 | 5 | ancoms 266 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
7 | 6 | ralbidva 2466 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
8 | peano2zm 9237 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
9 | peano2zm 9237 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
10 | zextle 9290 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))) → (𝑀 − 1) = (𝑁 − 1)) | |
11 | 10 | 3expia 1200 | . . . . 5 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
12 | 8, 9, 11 | syl2an 287 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
13 | zcn 9204 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 9204 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | ax-1cn 7854 | . . . . . 6 ⊢ 1 ∈ ℂ | |
16 | subcan2 8131 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) | |
17 | 15, 16 | mp3an3 1321 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
18 | 13, 14, 17 | syl2an 287 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
19 | 12, 18 | sylibd 148 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → 𝑀 = 𝑁)) |
20 | 7, 19 | sylbid 149 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) → 𝑀 = 𝑁)) |
21 | 20 | 3impia 1195 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∀wral 2448 class class class wbr 3987 (class class class)co 5850 ℂcc 7759 1c1 7762 < clt 7941 ≤ cle 7942 − cmin 8077 ℤcz 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |