ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zextlt GIF version

Theorem zextlt 9447
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.)
Assertion
Ref Expression
zextlt ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem zextlt
StepHypRef Expression
1 zltlem1 9412 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀𝑘 ≤ (𝑀 − 1)))
21adantrr 479 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑀𝑘 ≤ (𝑀 − 1)))
3 zltlem1 9412 . . . . . . 7 ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
43adantrl 478 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑁𝑘 ≤ (𝑁 − 1)))
52, 4bibi12d 235 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑘 < 𝑀𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))))
65ancoms 268 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 < 𝑀𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))))
76ralbidva 2501 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁) ↔ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))))
8 peano2zm 9392 . . . . 5 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
9 peano2zm 9392 . . . . 5 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
10 zextle 9446 . . . . . 6 (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))) → (𝑀 − 1) = (𝑁 − 1))
11103expia 1207 . . . . 5 (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1)))
128, 9, 11syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1)))
13 zcn 9359 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
14 zcn 9359 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
15 ax-1cn 8000 . . . . . 6 1 ∈ ℂ
16 subcan2 8279 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁))
1715, 16mp3an3 1338 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁))
1813, 14, 17syl2an 289 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁))
1912, 18sylibd 149 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → 𝑀 = 𝑁))
207, 19sylbid 150 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁) → 𝑀 = 𝑁))
21203impia 1202 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀𝑘 < 𝑁)) → 𝑀 = 𝑁)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wral 2483   class class class wbr 4043  (class class class)co 5934  cc 7905  1c1 7908   < clt 8089  cle 8090  cmin 8225  cz 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator