![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zextlt | GIF version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextlt | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltlem1 9374 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) | |
2 | 1 | adantrr 479 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) |
3 | zltlem1 9374 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) | |
4 | 3 | adantrl 478 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
5 | 2, 4 | bibi12d 235 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
6 | 5 | ancoms 268 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
7 | 6 | ralbidva 2490 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
8 | peano2zm 9355 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
9 | peano2zm 9355 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
10 | zextle 9408 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))) → (𝑀 − 1) = (𝑁 − 1)) | |
11 | 10 | 3expia 1207 | . . . . 5 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
12 | 8, 9, 11 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
13 | zcn 9322 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 9322 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | ax-1cn 7965 | . . . . . 6 ⊢ 1 ∈ ℂ | |
16 | subcan2 8244 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) | |
17 | 15, 16 | mp3an3 1337 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
18 | 13, 14, 17 | syl2an 289 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
19 | 12, 18 | sylibd 149 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → 𝑀 = 𝑁)) |
20 | 7, 19 | sylbid 150 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) → 𝑀 = 𝑁)) |
21 | 20 | 3impia 1202 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∀wral 2472 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 1c1 7873 < clt 8054 ≤ cle 8055 − cmin 8190 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |