![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zextlt | GIF version |
Description: An extensionality-like property for integer ordering. (Contributed by NM, 29-Oct-2005.) |
Ref | Expression |
---|---|
zextlt | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltlem1 8703 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) | |
2 | 1 | adantrr 463 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑀 ↔ 𝑘 ≤ (𝑀 − 1))) |
3 | zltlem1 8703 | . . . . . . 7 ⊢ ((𝑘 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) | |
4 | 3 | adantrl 462 | . . . . . 6 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑘 < 𝑁 ↔ 𝑘 ≤ (𝑁 − 1))) |
5 | 2, 4 | bibi12d 233 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
6 | 5 | ancoms 264 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑘 ∈ ℤ) → ((𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
7 | 6 | ralbidva 2370 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) ↔ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)))) |
8 | peano2zm 8684 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
9 | peano2zm 8684 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
10 | zextle 8733 | . . . . . 6 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1))) → (𝑀 − 1) = (𝑁 − 1)) | |
11 | 10 | 3expia 1141 | . . . . 5 ⊢ (((𝑀 − 1) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
12 | 8, 9, 11 | syl2an 283 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → (𝑀 − 1) = (𝑁 − 1))) |
13 | zcn 8651 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
14 | zcn 8651 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
15 | ax-1cn 7341 | . . . . . 6 ⊢ 1 ∈ ℂ | |
16 | subcan2 7610 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) | |
17 | 15, 16 | mp3an3 1258 | . . . . 5 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
18 | 13, 14, 17 | syl2an 283 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 − 1) = (𝑁 − 1) ↔ 𝑀 = 𝑁)) |
19 | 12, 18 | sylibd 147 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 ≤ (𝑀 − 1) ↔ 𝑘 ≤ (𝑁 − 1)) → 𝑀 = 𝑁)) |
20 | 7, 19 | sylbid 148 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁) → 𝑀 = 𝑁)) |
21 | 20 | 3impia 1136 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ∀𝑘 ∈ ℤ (𝑘 < 𝑀 ↔ 𝑘 < 𝑁)) → 𝑀 = 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ∀wral 2353 class class class wbr 3811 (class class class)co 5591 ℂcc 7251 1c1 7254 < clt 7425 ≤ cle 7426 − cmin 7556 ℤcz 8646 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3922 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-cnex 7339 ax-resscn 7340 ax-1cn 7341 ax-1re 7342 ax-icn 7343 ax-addcl 7344 ax-addrcl 7345 ax-mulcl 7346 ax-addcom 7348 ax-addass 7350 ax-distr 7352 ax-i2m1 7353 ax-0lt1 7354 ax-0id 7356 ax-rnegex 7357 ax-cnre 7359 ax-pre-ltirr 7360 ax-pre-ltwlin 7361 ax-pre-lttrn 7362 ax-pre-apti 7363 ax-pre-ltadd 7364 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-br 3812 df-opab 3866 df-id 4084 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-iota 4934 df-fun 4971 df-fv 4977 df-riota 5547 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-pnf 7427 df-mnf 7428 df-xr 7429 df-ltxr 7430 df-le 7431 df-sub 7558 df-neg 7559 df-inn 8317 df-n0 8566 df-z 8647 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |