MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddomi2 Structured version   Visualization version   GIF version

Theorem carddomi2 9659
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 10241, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddomi2 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))

Proof of Theorem carddomi2
StepHypRef Expression
1 cardnueq0 9653 . . . . . 6 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
21adantr 480 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
32biimpa 476 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 = ∅)
4 0domg 8840 . . . . 5 (𝐵𝑉 → ∅ ≼ 𝐵)
54ad2antlr 723 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ∅ ≼ 𝐵)
63, 5eqbrtrd 5092 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴𝐵)
76a1d 25 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
8 fvex 6769 . . . . 5 (card‘𝐵) ∈ V
9 simprr 769 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ⊆ (card‘𝐵))
10 ssdomg 8741 . . . . 5 ((card‘𝐵) ∈ V → ((card‘𝐴) ⊆ (card‘𝐵) → (card‘𝐴) ≼ (card‘𝐵)))
118, 9, 10mpsyl 68 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≼ (card‘𝐵))
12 cardid2 9642 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
1312ad2antrr 722 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≈ 𝐴)
14 simprl 767 . . . . . . 7 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≠ ∅)
15 ssn0 4331 . . . . . . 7 (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → (card‘𝐵) ≠ ∅)
169, 14, 15syl2anc 583 . . . . . 6 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≠ ∅)
17 ndmfv 6786 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
1817necon1ai 2970 . . . . . 6 ((card‘𝐵) ≠ ∅ → 𝐵 ∈ dom card)
19 cardid2 9642 . . . . . 6 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
2016, 18, 193syl 18 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
21 domen1 8855 . . . . . 6 ((card‘𝐴) ≈ 𝐴 → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴 ≼ (card‘𝐵)))
22 domen2 8856 . . . . . 6 ((card‘𝐵) ≈ 𝐵 → (𝐴 ≼ (card‘𝐵) ↔ 𝐴𝐵))
2321, 22sylan9bb 509 . . . . 5 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2413, 20, 23syl2anc 583 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2511, 24mpbid 231 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → 𝐴𝐵)
2625expr 456 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) ≠ ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
277, 26pm2.61dane 3031 1 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  dom cdm 5580  cfv 6418  cen 8688  cdom 8689  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-card 9628
This theorem is referenced by:  carddom2  9666
  Copyright terms: Public domain W3C validator