Proof of Theorem carddomi2
Step | Hyp | Ref
| Expression |
1 | | cardnueq0 9653 |
. . . . . 6
⊢ (𝐴 ∈ dom card →
((card‘𝐴) = ∅
↔ 𝐴 =
∅)) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅)) |
3 | 2 | biimpa 476 |
. . . 4
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 = ∅) |
4 | | 0domg 8840 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → ∅ ≼ 𝐵) |
5 | 4 | ad2antlr 723 |
. . . 4
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ (card‘𝐴) = ∅) → ∅ ≼ 𝐵) |
6 | 3, 5 | eqbrtrd 5092 |
. . 3
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 ≼ 𝐵) |
7 | 6 | a1d 25 |
. 2
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ (card‘𝐴) = ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) |
8 | | fvex 6769 |
. . . . 5
⊢
(card‘𝐵)
∈ V |
9 | | simprr 769 |
. . . . 5
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ⊆ (card‘𝐵)) |
10 | | ssdomg 8741 |
. . . . 5
⊢
((card‘𝐵)
∈ V → ((card‘𝐴) ⊆ (card‘𝐵) → (card‘𝐴) ≼ (card‘𝐵))) |
11 | 8, 9, 10 | mpsyl 68 |
. . . 4
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≼ (card‘𝐵)) |
12 | | cardid2 9642 |
. . . . . 6
⊢ (𝐴 ∈ dom card →
(card‘𝐴) ≈
𝐴) |
13 | 12 | ad2antrr 722 |
. . . . 5
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≈ 𝐴) |
14 | | simprl 767 |
. . . . . . 7
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≠ ∅) |
15 | | ssn0 4331 |
. . . . . . 7
⊢
(((card‘𝐴)
⊆ (card‘𝐵)
∧ (card‘𝐴) ≠
∅) → (card‘𝐵) ≠ ∅) |
16 | 9, 14, 15 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≠ ∅) |
17 | | ndmfv 6786 |
. . . . . . 7
⊢ (¬
𝐵 ∈ dom card →
(card‘𝐵) =
∅) |
18 | 17 | necon1ai 2970 |
. . . . . 6
⊢
((card‘𝐵) ≠
∅ → 𝐵 ∈ dom
card) |
19 | | cardid2 9642 |
. . . . . 6
⊢ (𝐵 ∈ dom card →
(card‘𝐵) ≈
𝐵) |
20 | 16, 18, 19 | 3syl 18 |
. . . . 5
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵) |
21 | | domen1 8855 |
. . . . . 6
⊢
((card‘𝐴)
≈ 𝐴 →
((card‘𝐴) ≼
(card‘𝐵) ↔ 𝐴 ≼ (card‘𝐵))) |
22 | | domen2 8856 |
. . . . . 6
⊢
((card‘𝐵)
≈ 𝐵 → (𝐴 ≼ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
23 | 21, 22 | sylan9bb 509 |
. . . . 5
⊢
(((card‘𝐴)
≈ 𝐴 ∧
(card‘𝐵) ≈
𝐵) →
((card‘𝐴) ≼
(card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
24 | 13, 20, 23 | syl2anc 583 |
. . . 4
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴 ≼ 𝐵)) |
25 | 11, 24 | mpbid 231 |
. . 3
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → 𝐴 ≼ 𝐵) |
26 | 25 | expr 456 |
. 2
⊢ (((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) ∧ (card‘𝐴) ≠ ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) |
27 | 7, 26 | pm2.61dane 3031 |
1
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ 𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴 ≼ 𝐵)) |