MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddomi2 Structured version   Visualization version   GIF version

Theorem carddomi2 9923
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 10507, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddomi2 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))

Proof of Theorem carddomi2
StepHypRef Expression
1 cardnueq0 9917 . . . . . 6 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
21adantr 480 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
32biimpa 476 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 = ∅)
4 0domg 9068 . . . . 5 (𝐵𝑉 → ∅ ≼ 𝐵)
54ad2antlr 727 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ∅ ≼ 𝐵)
63, 5eqbrtrd 5129 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴𝐵)
76a1d 25 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
8 fvex 6871 . . . . 5 (card‘𝐵) ∈ V
9 simprr 772 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ⊆ (card‘𝐵))
10 ssdomg 8971 . . . . 5 ((card‘𝐵) ∈ V → ((card‘𝐴) ⊆ (card‘𝐵) → (card‘𝐴) ≼ (card‘𝐵)))
118, 9, 10mpsyl 68 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≼ (card‘𝐵))
12 cardid2 9906 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
1312ad2antrr 726 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≈ 𝐴)
14 simprl 770 . . . . . . 7 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≠ ∅)
15 ssn0 4367 . . . . . . 7 (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → (card‘𝐵) ≠ ∅)
169, 14, 15syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≠ ∅)
17 ndmfv 6893 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
1817necon1ai 2952 . . . . . 6 ((card‘𝐵) ≠ ∅ → 𝐵 ∈ dom card)
19 cardid2 9906 . . . . . 6 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
2016, 18, 193syl 18 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
21 domen1 9083 . . . . . 6 ((card‘𝐴) ≈ 𝐴 → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴 ≼ (card‘𝐵)))
22 domen2 9084 . . . . . 6 ((card‘𝐵) ≈ 𝐵 → (𝐴 ≼ (card‘𝐵) ↔ 𝐴𝐵))
2321, 22sylan9bb 509 . . . . 5 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2413, 20, 23syl2anc 584 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2511, 24mpbid 232 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → 𝐴𝐵)
2625expr 456 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) ≠ ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
277, 26pm2.61dane 3012 1 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  dom cdm 5638  cfv 6511  cen 8915  cdom 8916  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-card 9892
This theorem is referenced by:  carddom2  9930
  Copyright terms: Public domain W3C validator