MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddomi2 Structured version   Visualization version   GIF version

Theorem carddomi2 9728
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 10310, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddomi2 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))

Proof of Theorem carddomi2
StepHypRef Expression
1 cardnueq0 9722 . . . . . 6 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
21adantr 481 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
32biimpa 477 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 = ∅)
4 0domg 8887 . . . . 5 (𝐵𝑉 → ∅ ≼ 𝐵)
54ad2antlr 724 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ∅ ≼ 𝐵)
63, 5eqbrtrd 5096 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴𝐵)
76a1d 25 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
8 fvex 6787 . . . . 5 (card‘𝐵) ∈ V
9 simprr 770 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ⊆ (card‘𝐵))
10 ssdomg 8786 . . . . 5 ((card‘𝐵) ∈ V → ((card‘𝐴) ⊆ (card‘𝐵) → (card‘𝐴) ≼ (card‘𝐵)))
118, 9, 10mpsyl 68 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≼ (card‘𝐵))
12 cardid2 9711 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
1312ad2antrr 723 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≈ 𝐴)
14 simprl 768 . . . . . . 7 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≠ ∅)
15 ssn0 4334 . . . . . . 7 (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → (card‘𝐵) ≠ ∅)
169, 14, 15syl2anc 584 . . . . . 6 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≠ ∅)
17 ndmfv 6804 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
1817necon1ai 2971 . . . . . 6 ((card‘𝐵) ≠ ∅ → 𝐵 ∈ dom card)
19 cardid2 9711 . . . . . 6 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
2016, 18, 193syl 18 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
21 domen1 8906 . . . . . 6 ((card‘𝐴) ≈ 𝐴 → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴 ≼ (card‘𝐵)))
22 domen2 8907 . . . . . 6 ((card‘𝐵) ≈ 𝐵 → (𝐴 ≼ (card‘𝐵) ↔ 𝐴𝐵))
2321, 22sylan9bb 510 . . . . 5 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2413, 20, 23syl2anc 584 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2511, 24mpbid 231 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → 𝐴𝐵)
2625expr 457 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) ≠ ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
277, 26pm2.61dane 3032 1 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887  c0 4256   class class class wbr 5074  dom cdm 5589  cfv 6433  cen 8730  cdom 8731  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-er 8498  df-en 8734  df-dom 8735  df-card 9697
This theorem is referenced by:  carddom2  9735
  Copyright terms: Public domain W3C validator