MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddomi2 Structured version   Visualization version   GIF version

Theorem carddomi2 9393
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 9970, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddomi2 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))

Proof of Theorem carddomi2
StepHypRef Expression
1 cardnueq0 9387 . . . . . 6 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
21adantr 483 . . . . 5 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
32biimpa 479 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴 = ∅)
4 0domg 8638 . . . . 5 (𝐵𝑉 → ∅ ≼ 𝐵)
54ad2antlr 725 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ∅ ≼ 𝐵)
63, 5eqbrtrd 5080 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → 𝐴𝐵)
76a1d 25 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) = ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
8 fvex 6677 . . . . 5 (card‘𝐵) ∈ V
9 simprr 771 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ⊆ (card‘𝐵))
10 ssdomg 8549 . . . . 5 ((card‘𝐵) ∈ V → ((card‘𝐴) ⊆ (card‘𝐵) → (card‘𝐴) ≼ (card‘𝐵)))
118, 9, 10mpsyl 68 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≼ (card‘𝐵))
12 cardid2 9376 . . . . . 6 (𝐴 ∈ dom card → (card‘𝐴) ≈ 𝐴)
1312ad2antrr 724 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≈ 𝐴)
14 simprl 769 . . . . . . 7 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐴) ≠ ∅)
15 ssn0 4353 . . . . . . 7 (((card‘𝐴) ⊆ (card‘𝐵) ∧ (card‘𝐴) ≠ ∅) → (card‘𝐵) ≠ ∅)
169, 14, 15syl2anc 586 . . . . . 6 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≠ ∅)
17 ndmfv 6694 . . . . . . 7 𝐵 ∈ dom card → (card‘𝐵) = ∅)
1817necon1ai 3043 . . . . . 6 ((card‘𝐵) ≠ ∅ → 𝐵 ∈ dom card)
19 cardid2 9376 . . . . . 6 (𝐵 ∈ dom card → (card‘𝐵) ≈ 𝐵)
2016, 18, 193syl 18 . . . . 5 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
21 domen1 8653 . . . . . 6 ((card‘𝐴) ≈ 𝐴 → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴 ≼ (card‘𝐵)))
22 domen2 8654 . . . . . 6 ((card‘𝐵) ≈ 𝐵 → (𝐴 ≼ (card‘𝐵) ↔ 𝐴𝐵))
2321, 22sylan9bb 512 . . . . 5 (((card‘𝐴) ≈ 𝐴 ∧ (card‘𝐵) ≈ 𝐵) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2413, 20, 23syl2anc 586 . . . 4 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → ((card‘𝐴) ≼ (card‘𝐵) ↔ 𝐴𝐵))
2511, 24mpbid 234 . . 3 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ ((card‘𝐴) ≠ ∅ ∧ (card‘𝐴) ⊆ (card‘𝐵))) → 𝐴𝐵)
2625expr 459 . 2 (((𝐴 ∈ dom card ∧ 𝐵𝑉) ∧ (card‘𝐴) ≠ ∅) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
277, 26pm2.61dane 3104 1 ((𝐴 ∈ dom card ∧ 𝐵𝑉) → ((card‘𝐴) ⊆ (card‘𝐵) → 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5058  dom cdm 5549  cfv 6349  cen 8500  cdom 8501  cardccrd 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-er 8283  df-en 8504  df-dom 8505  df-card 9362
This theorem is referenced by:  carddom2  9400
  Copyright terms: Public domain W3C validator