Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfidom1o Structured version   Visualization version   GIF version

Theorem safesnsupfidom1o 43406
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfidom1o.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfidom1o.finite (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
safesnsupfidom1o (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)

Proof of Theorem safesnsupfidom1o
StepHypRef Expression
1 iftrue 4494 . . . 4 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
21adantl 481 . . 3 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
3 ensn1g 8993 . . . . 5 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ 1o)
4 1on 8446 . . . . . 6 1o ∈ On
5 domrefg 8958 . . . . . 6 (1o ∈ On → 1o ≼ 1o)
64, 5ax-mp 5 . . . . 5 1o ≼ 1o
7 endomtr 8983 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ 1o ∧ 1o ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
83, 6, 7sylancl 586 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
9 snprc 4681 . . . . . 6 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V ↔ {sup(𝐵, 𝐴, 𝑅)} = ∅)
10 snex 5391 . . . . . . 7 {sup(𝐵, 𝐴, 𝑅)} ∈ V
11 eqeng 8957 . . . . . . 7 ({sup(𝐵, 𝐴, 𝑅)} ∈ V → ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅))
1210, 11ax-mp 5 . . . . . 6 ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
139, 12sylbi 217 . . . . 5 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
14 0domg 9068 . . . . . 6 (1o ∈ On → ∅ ≼ 1o)
154, 14ax-mp 5 . . . . 5 ∅ ≼ 1o
16 endomtr 8983 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ ∅ ∧ ∅ ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
1713, 15, 16sylancl 586 . . . 4 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
188, 17pm2.61i 182 . . 3 {sup(𝐵, 𝐴, 𝑅)} ≼ 1o
192, 18eqbrtrdi 5146 . 2 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
20 iffalse 4497 . . . 4 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
2120adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
22 safesnsupfidom1o.finite . . . . 5 (𝜑𝐵 ∈ Fin)
23 safesnsupfidom1o.small . . . . 5 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
24 0elon 6387 . . . . . . . . 9 ∅ ∈ On
25 eleq1 2816 . . . . . . . . 9 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2624, 25mpbiri 258 . . . . . . . 8 (𝑂 = ∅ → 𝑂 ∈ On)
27 eleq1 2816 . . . . . . . . 9 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
284, 27mpbiri 258 . . . . . . . 8 (𝑂 = 1o𝑂 ∈ On)
2926, 28jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
30 fidomtri 9946 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑂 ∈ On) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
3129, 30sylan2 593 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
32 breq2 5111 . . . . . . . . 9 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ ∅))
33 domtr 8978 . . . . . . . . . 10 ((𝐵 ≼ ∅ ∧ ∅ ≼ 1o) → 𝐵 ≼ 1o)
3415, 33mpan2 691 . . . . . . . . 9 (𝐵 ≼ ∅ → 𝐵 ≼ 1o)
3532, 34biimtrdi 253 . . . . . . . 8 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ 1o))
36 breq2 5111 . . . . . . . . 9 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3736biimpd 229 . . . . . . . 8 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3835, 37jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → (𝐵𝑂𝐵 ≼ 1o))
3938adantl 481 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂𝐵 ≼ 1o))
4031, 39sylbird 260 . . . . 5 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (¬ 𝑂𝐵𝐵 ≼ 1o))
4122, 23, 40syl2anc 584 . . . 4 (𝜑 → (¬ 𝑂𝐵𝐵 ≼ 1o))
4241imp 406 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → 𝐵 ≼ 1o)
4321, 42eqbrtrd 5129 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
4419, 43pm2.61dan 812 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589   class class class wbr 5107  Oncon0 6332  1oc1o 8427  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  supcsup 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator