Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfidom1o Structured version   Visualization version   GIF version

Theorem safesnsupfidom1o 42153
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfidom1o.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfidom1o.finite (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
safesnsupfidom1o (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)

Proof of Theorem safesnsupfidom1o
StepHypRef Expression
1 iftrue 4533 . . . 4 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
21adantl 482 . . 3 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
3 ensn1g 9015 . . . . 5 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ 1o)
4 1on 8474 . . . . . 6 1o ∈ On
5 domrefg 8979 . . . . . 6 (1o ∈ On → 1o ≼ 1o)
64, 5ax-mp 5 . . . . 5 1o ≼ 1o
7 endomtr 9004 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ 1o ∧ 1o ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
83, 6, 7sylancl 586 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
9 snprc 4720 . . . . . 6 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V ↔ {sup(𝐵, 𝐴, 𝑅)} = ∅)
10 snex 5430 . . . . . . 7 {sup(𝐵, 𝐴, 𝑅)} ∈ V
11 eqeng 8978 . . . . . . 7 ({sup(𝐵, 𝐴, 𝑅)} ∈ V → ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅))
1210, 11ax-mp 5 . . . . . 6 ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
139, 12sylbi 216 . . . . 5 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
14 0domg 9096 . . . . . 6 (1o ∈ On → ∅ ≼ 1o)
154, 14ax-mp 5 . . . . 5 ∅ ≼ 1o
16 endomtr 9004 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ ∅ ∧ ∅ ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
1713, 15, 16sylancl 586 . . . 4 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
188, 17pm2.61i 182 . . 3 {sup(𝐵, 𝐴, 𝑅)} ≼ 1o
192, 18eqbrtrdi 5186 . 2 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
20 iffalse 4536 . . . 4 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
2120adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
22 safesnsupfidom1o.finite . . . . 5 (𝜑𝐵 ∈ Fin)
23 safesnsupfidom1o.small . . . . 5 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
24 0elon 6415 . . . . . . . . 9 ∅ ∈ On
25 eleq1 2821 . . . . . . . . 9 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2624, 25mpbiri 257 . . . . . . . 8 (𝑂 = ∅ → 𝑂 ∈ On)
27 eleq1 2821 . . . . . . . . 9 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
284, 27mpbiri 257 . . . . . . . 8 (𝑂 = 1o𝑂 ∈ On)
2926, 28jaoi 855 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
30 fidomtri 9984 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑂 ∈ On) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
3129, 30sylan2 593 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
32 breq2 5151 . . . . . . . . 9 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ ∅))
33 domtr 8999 . . . . . . . . . 10 ((𝐵 ≼ ∅ ∧ ∅ ≼ 1o) → 𝐵 ≼ 1o)
3415, 33mpan2 689 . . . . . . . . 9 (𝐵 ≼ ∅ → 𝐵 ≼ 1o)
3532, 34syl6bi 252 . . . . . . . 8 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ 1o))
36 breq2 5151 . . . . . . . . 9 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3736biimpd 228 . . . . . . . 8 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3835, 37jaoi 855 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → (𝐵𝑂𝐵 ≼ 1o))
3938adantl 482 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂𝐵 ≼ 1o))
4031, 39sylbird 259 . . . . 5 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (¬ 𝑂𝐵𝐵 ≼ 1o))
4122, 23, 40syl2anc 584 . . . 4 (𝜑 → (¬ 𝑂𝐵𝐵 ≼ 1o))
4241imp 407 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → 𝐵 ≼ 1o)
4321, 42eqbrtrd 5169 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
4419, 43pm2.61dan 811 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  Vcvv 3474  c0 4321  ifcif 4527  {csn 4627   class class class wbr 5147  Oncon0 6361  1oc1o 8455  cen 8932  cdom 8933  csdm 8934  Fincfn 8935  supcsup 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator