Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfidom1o Structured version   Visualization version   GIF version

Theorem safesnsupfidom1o 43379
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfidom1o.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfidom1o.finite (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
safesnsupfidom1o (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)

Proof of Theorem safesnsupfidom1o
StepHypRef Expression
1 iftrue 4490 . . . 4 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
21adantl 481 . . 3 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
3 ensn1g 8970 . . . . 5 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ 1o)
4 1on 8423 . . . . . 6 1o ∈ On
5 domrefg 8935 . . . . . 6 (1o ∈ On → 1o ≼ 1o)
64, 5ax-mp 5 . . . . 5 1o ≼ 1o
7 endomtr 8960 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ 1o ∧ 1o ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
83, 6, 7sylancl 586 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
9 snprc 4677 . . . . . 6 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V ↔ {sup(𝐵, 𝐴, 𝑅)} = ∅)
10 snex 5386 . . . . . . 7 {sup(𝐵, 𝐴, 𝑅)} ∈ V
11 eqeng 8934 . . . . . . 7 ({sup(𝐵, 𝐴, 𝑅)} ∈ V → ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅))
1210, 11ax-mp 5 . . . . . 6 ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
139, 12sylbi 217 . . . . 5 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
14 0domg 9045 . . . . . 6 (1o ∈ On → ∅ ≼ 1o)
154, 14ax-mp 5 . . . . 5 ∅ ≼ 1o
16 endomtr 8960 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ ∅ ∧ ∅ ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
1713, 15, 16sylancl 586 . . . 4 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
188, 17pm2.61i 182 . . 3 {sup(𝐵, 𝐴, 𝑅)} ≼ 1o
192, 18eqbrtrdi 5141 . 2 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
20 iffalse 4493 . . . 4 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
2120adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
22 safesnsupfidom1o.finite . . . . 5 (𝜑𝐵 ∈ Fin)
23 safesnsupfidom1o.small . . . . 5 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
24 0elon 6375 . . . . . . . . 9 ∅ ∈ On
25 eleq1 2816 . . . . . . . . 9 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2624, 25mpbiri 258 . . . . . . . 8 (𝑂 = ∅ → 𝑂 ∈ On)
27 eleq1 2816 . . . . . . . . 9 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
284, 27mpbiri 258 . . . . . . . 8 (𝑂 = 1o𝑂 ∈ On)
2926, 28jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
30 fidomtri 9922 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑂 ∈ On) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
3129, 30sylan2 593 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
32 breq2 5106 . . . . . . . . 9 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ ∅))
33 domtr 8955 . . . . . . . . . 10 ((𝐵 ≼ ∅ ∧ ∅ ≼ 1o) → 𝐵 ≼ 1o)
3415, 33mpan2 691 . . . . . . . . 9 (𝐵 ≼ ∅ → 𝐵 ≼ 1o)
3532, 34biimtrdi 253 . . . . . . . 8 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ 1o))
36 breq2 5106 . . . . . . . . 9 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3736biimpd 229 . . . . . . . 8 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3835, 37jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → (𝐵𝑂𝐵 ≼ 1o))
3938adantl 481 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂𝐵 ≼ 1o))
4031, 39sylbird 260 . . . . 5 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (¬ 𝑂𝐵𝐵 ≼ 1o))
4122, 23, 40syl2anc 584 . . . 4 (𝜑 → (¬ 𝑂𝐵𝐵 ≼ 1o))
4241imp 406 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → 𝐵 ≼ 1o)
4321, 42eqbrtrd 5124 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
4419, 43pm2.61dan 812 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  ifcif 4484  {csn 4585   class class class wbr 5102  Oncon0 6320  1oc1o 8404  cen 8892  cdom 8893  csdm 8894  Fincfn 8895  supcsup 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator