Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfidom1o Structured version   Visualization version   GIF version

Theorem safesnsupfidom1o 42770
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfidom1o.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfidom1o.finite (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
safesnsupfidom1o (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)

Proof of Theorem safesnsupfidom1o
StepHypRef Expression
1 iftrue 4530 . . . 4 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
21adantl 481 . . 3 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
3 ensn1g 9035 . . . . 5 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ 1o)
4 1on 8492 . . . . . 6 1o ∈ On
5 domrefg 8999 . . . . . 6 (1o ∈ On → 1o ≼ 1o)
64, 5ax-mp 5 . . . . 5 1o ≼ 1o
7 endomtr 9024 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ 1o ∧ 1o ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
83, 6, 7sylancl 585 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
9 snprc 4717 . . . . . 6 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V ↔ {sup(𝐵, 𝐴, 𝑅)} = ∅)
10 snex 5427 . . . . . . 7 {sup(𝐵, 𝐴, 𝑅)} ∈ V
11 eqeng 8998 . . . . . . 7 ({sup(𝐵, 𝐴, 𝑅)} ∈ V → ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅))
1210, 11ax-mp 5 . . . . . 6 ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
139, 12sylbi 216 . . . . 5 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
14 0domg 9116 . . . . . 6 (1o ∈ On → ∅ ≼ 1o)
154, 14ax-mp 5 . . . . 5 ∅ ≼ 1o
16 endomtr 9024 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ ∅ ∧ ∅ ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
1713, 15, 16sylancl 585 . . . 4 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
188, 17pm2.61i 182 . . 3 {sup(𝐵, 𝐴, 𝑅)} ≼ 1o
192, 18eqbrtrdi 5181 . 2 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
20 iffalse 4533 . . . 4 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
2120adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
22 safesnsupfidom1o.finite . . . . 5 (𝜑𝐵 ∈ Fin)
23 safesnsupfidom1o.small . . . . 5 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
24 0elon 6417 . . . . . . . . 9 ∅ ∈ On
25 eleq1 2816 . . . . . . . . 9 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2624, 25mpbiri 258 . . . . . . . 8 (𝑂 = ∅ → 𝑂 ∈ On)
27 eleq1 2816 . . . . . . . . 9 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
284, 27mpbiri 258 . . . . . . . 8 (𝑂 = 1o𝑂 ∈ On)
2926, 28jaoi 856 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
30 fidomtri 10008 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑂 ∈ On) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
3129, 30sylan2 592 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
32 breq2 5146 . . . . . . . . 9 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ ∅))
33 domtr 9019 . . . . . . . . . 10 ((𝐵 ≼ ∅ ∧ ∅ ≼ 1o) → 𝐵 ≼ 1o)
3415, 33mpan2 690 . . . . . . . . 9 (𝐵 ≼ ∅ → 𝐵 ≼ 1o)
3532, 34syl6bi 253 . . . . . . . 8 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ 1o))
36 breq2 5146 . . . . . . . . 9 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3736biimpd 228 . . . . . . . 8 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3835, 37jaoi 856 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → (𝐵𝑂𝐵 ≼ 1o))
3938adantl 481 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂𝐵 ≼ 1o))
4031, 39sylbird 260 . . . . 5 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (¬ 𝑂𝐵𝐵 ≼ 1o))
4122, 23, 40syl2anc 583 . . . 4 (𝜑 → (¬ 𝑂𝐵𝐵 ≼ 1o))
4241imp 406 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → 𝐵 ≼ 1o)
4321, 42eqbrtrd 5164 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
4419, 43pm2.61dan 812 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  Vcvv 3469  c0 4318  ifcif 4524  {csn 4624   class class class wbr 5142  Oncon0 6363  1oc1o 8473  cen 8952  cdom 8953  csdm 8954  Fincfn 8955  supcsup 9455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-card 9954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator