Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfidom1o Structured version   Visualization version   GIF version

Theorem safesnsupfidom1o 43574
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfidom1o.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfidom1o.finite (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
safesnsupfidom1o (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)

Proof of Theorem safesnsupfidom1o
StepHypRef Expression
1 iftrue 4482 . . . 4 (𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
21adantl 481 . . 3 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = {sup(𝐵, 𝐴, 𝑅)})
3 ensn1g 8955 . . . . 5 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ 1o)
4 1on 8406 . . . . . 6 1o ∈ On
5 domrefg 8920 . . . . . 6 (1o ∈ On → 1o ≼ 1o)
64, 5ax-mp 5 . . . . 5 1o ≼ 1o
7 endomtr 8945 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ 1o ∧ 1o ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
83, 6, 7sylancl 586 . . . 4 (sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
9 snprc 4671 . . . . . 6 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V ↔ {sup(𝐵, 𝐴, 𝑅)} = ∅)
10 snex 5378 . . . . . . 7 {sup(𝐵, 𝐴, 𝑅)} ∈ V
11 eqeng 8919 . . . . . . 7 ({sup(𝐵, 𝐴, 𝑅)} ∈ V → ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅))
1210, 11ax-mp 5 . . . . . 6 ({sup(𝐵, 𝐴, 𝑅)} = ∅ → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
139, 12sylbi 217 . . . . 5 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≈ ∅)
14 0domg 9028 . . . . . 6 (1o ∈ On → ∅ ≼ 1o)
154, 14ax-mp 5 . . . . 5 ∅ ≼ 1o
16 endomtr 8945 . . . . 5 (({sup(𝐵, 𝐴, 𝑅)} ≈ ∅ ∧ ∅ ≼ 1o) → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
1713, 15, 16sylancl 586 . . . 4 (¬ sup(𝐵, 𝐴, 𝑅) ∈ V → {sup(𝐵, 𝐴, 𝑅)} ≼ 1o)
188, 17pm2.61i 182 . . 3 {sup(𝐵, 𝐴, 𝑅)} ≼ 1o
192, 18eqbrtrdi 5134 . 2 ((𝜑𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
20 iffalse 4485 . . . 4 𝑂𝐵 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
2120adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) = 𝐵)
22 safesnsupfidom1o.finite . . . . 5 (𝜑𝐵 ∈ Fin)
23 safesnsupfidom1o.small . . . . 5 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
24 0elon 6369 . . . . . . . . 9 ∅ ∈ On
25 eleq1 2821 . . . . . . . . 9 (𝑂 = ∅ → (𝑂 ∈ On ↔ ∅ ∈ On))
2624, 25mpbiri 258 . . . . . . . 8 (𝑂 = ∅ → 𝑂 ∈ On)
27 eleq1 2821 . . . . . . . . 9 (𝑂 = 1o → (𝑂 ∈ On ↔ 1o ∈ On))
284, 27mpbiri 258 . . . . . . . 8 (𝑂 = 1o𝑂 ∈ On)
2926, 28jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → 𝑂 ∈ On)
30 fidomtri 9897 . . . . . . 7 ((𝐵 ∈ Fin ∧ 𝑂 ∈ On) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
3129, 30sylan2 593 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂 ↔ ¬ 𝑂𝐵))
32 breq2 5099 . . . . . . . . 9 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ ∅))
33 domtr 8940 . . . . . . . . . 10 ((𝐵 ≼ ∅ ∧ ∅ ≼ 1o) → 𝐵 ≼ 1o)
3415, 33mpan2 691 . . . . . . . . 9 (𝐵 ≼ ∅ → 𝐵 ≼ 1o)
3532, 34biimtrdi 253 . . . . . . . 8 (𝑂 = ∅ → (𝐵𝑂𝐵 ≼ 1o))
36 breq2 5099 . . . . . . . . 9 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3736biimpd 229 . . . . . . . 8 (𝑂 = 1o → (𝐵𝑂𝐵 ≼ 1o))
3835, 37jaoi 857 . . . . . . 7 ((𝑂 = ∅ ∨ 𝑂 = 1o) → (𝐵𝑂𝐵 ≼ 1o))
3938adantl 481 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (𝐵𝑂𝐵 ≼ 1o))
4031, 39sylbird 260 . . . . 5 ((𝐵 ∈ Fin ∧ (𝑂 = ∅ ∨ 𝑂 = 1o)) → (¬ 𝑂𝐵𝐵 ≼ 1o))
4122, 23, 40syl2anc 584 . . . 4 (𝜑 → (¬ 𝑂𝐵𝐵 ≼ 1o))
4241imp 406 . . 3 ((𝜑 ∧ ¬ 𝑂𝐵) → 𝐵 ≼ 1o)
4321, 42eqbrtrd 5117 . 2 ((𝜑 ∧ ¬ 𝑂𝐵) → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
4419, 43pm2.61dan 812 1 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  ifcif 4476  {csn 4577   class class class wbr 5095  Oncon0 6314  1oc1o 8387  cen 8876  cdom 8877  csdm 8878  Fincfn 8879  supcsup 9335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator