MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Structured version   Visualization version   GIF version

Theorem ufildom1 23955
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)

Proof of Theorem ufildom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5169 . 2 ( 𝐹 = ∅ → ( 𝐹 ≼ 1o ↔ ∅ ≼ 1o))
2 uffixsn 23954 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
3 intss1 4987 . . . . . . . . 9 ({𝑥} ∈ 𝐹 𝐹 ⊆ {𝑥})
42, 3syl 17 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 ⊆ {𝑥})
5 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝑥 𝐹)
65snssd 4834 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ⊆ 𝐹)
74, 6eqssd 4026 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 = {𝑥})
87ex 412 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 𝐹 = {𝑥}))
98eximdv 1916 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 → ∃𝑥 𝐹 = {𝑥}))
10 n0 4376 . . . . 5 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
11 en1 9086 . . . . 5 ( 𝐹 ≈ 1o ↔ ∃𝑥 𝐹 = {𝑥})
129, 10, 113imtr4g 296 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ → 𝐹 ≈ 1o))
1312imp 406 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≈ 1o)
14 endom 9039 . . 3 ( 𝐹 ≈ 1o 𝐹 ≼ 1o)
1513, 14syl 17 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≼ 1o)
16 1on 8534 . . 3 1o ∈ On
17 0domg 9166 . . 3 (1o ∈ On → ∅ ≼ 1o)
1816, 17mp1i 13 . 2 (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1o)
191, 15, 18pm2.61ne 3033 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wss 3976  c0 4352  {csn 4648   cint 4970   class class class wbr 5166  Oncon0 6395  cfv 6573  1oc1o 8515  cen 9000  cdom 9001  UFilcufil 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-en 9004  df-dom 9005  df-fbas 21384  df-fg 21385  df-fil 23875  df-ufil 23930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator