MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Structured version   Visualization version   GIF version

Theorem ufildom1 22534
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)

Proof of Theorem ufildom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5069 . 2 ( 𝐹 = ∅ → ( 𝐹 ≼ 1o ↔ ∅ ≼ 1o))
2 uffixsn 22533 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
3 intss1 4891 . . . . . . . . 9 ({𝑥} ∈ 𝐹 𝐹 ⊆ {𝑥})
42, 3syl 17 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 ⊆ {𝑥})
5 simpr 487 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝑥 𝐹)
65snssd 4742 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ⊆ 𝐹)
74, 6eqssd 3984 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 = {𝑥})
87ex 415 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 𝐹 = {𝑥}))
98eximdv 1918 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 → ∃𝑥 𝐹 = {𝑥}))
10 n0 4310 . . . . 5 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
11 en1 8576 . . . . 5 ( 𝐹 ≈ 1o ↔ ∃𝑥 𝐹 = {𝑥})
129, 10, 113imtr4g 298 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ → 𝐹 ≈ 1o))
1312imp 409 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≈ 1o)
14 endom 8536 . . 3 ( 𝐹 ≈ 1o 𝐹 ≼ 1o)
1513, 14syl 17 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≼ 1o)
16 1on 8109 . . 3 1o ∈ On
17 0domg 8644 . . 3 (1o ∈ On → ∅ ≼ 1o)
1816, 17mp1i 13 . 2 (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1o)
191, 15, 18pm2.61ne 3102 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  wss 3936  c0 4291  {csn 4567   cint 4876   class class class wbr 5066  Oncon0 6191  cfv 6355  1oc1o 8095  cen 8506  cdom 8507  UFilcufil 22507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1o 8102  df-en 8510  df-dom 8511  df-fbas 20542  df-fg 20543  df-fil 22454  df-ufil 22509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator