MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Structured version   Visualization version   GIF version

Theorem ufildom1 23846
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)

Proof of Theorem ufildom1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5144 . 2 ( 𝐹 = ∅ → ( 𝐹 ≼ 1o ↔ ∅ ≼ 1o))
2 uffixsn 23845 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
3 intss1 4959 . . . . . . . . 9 ({𝑥} ∈ 𝐹 𝐹 ⊆ {𝑥})
42, 3syl 17 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 ⊆ {𝑥})
5 simpr 483 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝑥 𝐹)
65snssd 4806 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ⊆ 𝐹)
74, 6eqssd 3989 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → 𝐹 = {𝑥})
87ex 411 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 𝐹 = {𝑥}))
98eximdv 1912 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 → ∃𝑥 𝐹 = {𝑥}))
10 n0 4340 . . . . 5 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
11 en1 9042 . . . . 5 ( 𝐹 ≈ 1o ↔ ∃𝑥 𝐹 = {𝑥})
129, 10, 113imtr4g 295 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ → 𝐹 ≈ 1o))
1312imp 405 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≈ 1o)
14 endom 8996 . . 3 ( 𝐹 ≈ 1o 𝐹 ≼ 1o)
1513, 14syl 17 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝐹 ≼ 1o)
16 1on 8495 . . 3 1o ∈ On
17 0domg 9121 . . 3 (1o ∈ On → ∅ ≼ 1o)
1816, 17mp1i 13 . 2 (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1o)
191, 15, 18pm2.61ne 3017 1 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2930  wss 3939  c0 4316  {csn 4622   cint 4942   class class class wbr 5141  Oncon0 6362  cfv 6541  1oc1o 8476  cen 8957  cdom 8958  UFilcufil 23819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4943  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1o 8483  df-en 8961  df-dom 8962  df-fbas 21278  df-fg 21279  df-fil 23766  df-ufil 23821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator