| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufildom1 | Structured version Visualization version GIF version | ||
| Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| ufildom1 | ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5105 | . 2 ⊢ (∩ 𝐹 = ∅ → (∩ 𝐹 ≼ 1o ↔ ∅ ≼ 1o)) | |
| 2 | uffixsn 23845 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ∈ 𝐹) | |
| 3 | intss1 4923 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝐹 → ∩ 𝐹 ⊆ {𝑥}) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 ⊆ {𝑥}) |
| 5 | simpr 484 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → 𝑥 ∈ ∩ 𝐹) | |
| 6 | 5 | snssd 4769 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ⊆ ∩ 𝐹) |
| 7 | 4, 6 | eqssd 3961 | . . . . . . 7 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 = {𝑥}) |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → ∩ 𝐹 = {𝑥})) |
| 9 | 8 | eximdv 1917 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 → ∃𝑥∩ 𝐹 = {𝑥})) |
| 10 | n0 4312 | . . . . 5 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
| 11 | en1 8972 | . . . . 5 ⊢ (∩ 𝐹 ≈ 1o ↔ ∃𝑥∩ 𝐹 = {𝑥}) | |
| 12 | 9, 10, 11 | 3imtr4g 296 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ → ∩ 𝐹 ≈ 1o)) |
| 13 | 12 | imp 406 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≈ 1o) |
| 14 | endom 8927 | . . 3 ⊢ (∩ 𝐹 ≈ 1o → ∩ 𝐹 ≼ 1o) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≼ 1o) |
| 16 | 1on 8423 | . . 3 ⊢ 1o ∈ On | |
| 17 | 0domg 9045 | . . 3 ⊢ (1o ∈ On → ∅ ≼ 1o) | |
| 18 | 16, 17 | mp1i 13 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1o) |
| 19 | 1, 15, 18 | pm2.61ne 3010 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 {csn 4585 ∩ cint 4906 class class class wbr 5102 Oncon0 6320 ‘cfv 6499 1oc1o 8404 ≈ cen 8892 ≼ cdom 8893 UFilcufil 23819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1o 8411 df-en 8896 df-dom 8897 df-fbas 21293 df-fg 21294 df-fil 23766 df-ufil 23821 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |