![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ufildom1 | Structured version Visualization version GIF version |
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
ufildom1 | ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5144 | . 2 ⊢ (∩ 𝐹 = ∅ → (∩ 𝐹 ≼ 1o ↔ ∅ ≼ 1o)) | |
2 | uffixsn 23845 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ∈ 𝐹) | |
3 | intss1 4959 | . . . . . . . . 9 ⊢ ({𝑥} ∈ 𝐹 → ∩ 𝐹 ⊆ {𝑥}) | |
4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 ⊆ {𝑥}) |
5 | simpr 483 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → 𝑥 ∈ ∩ 𝐹) | |
6 | 5 | snssd 4806 | . . . . . . . 8 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → {𝑥} ⊆ ∩ 𝐹) |
7 | 4, 6 | eqssd 3989 | . . . . . . 7 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ ∩ 𝐹) → ∩ 𝐹 = {𝑥}) |
8 | 7 | ex 411 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → ∩ 𝐹 = {𝑥})) |
9 | 8 | eximdv 1912 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 → ∃𝑥∩ 𝐹 = {𝑥})) |
10 | n0 4340 | . . . . 5 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
11 | en1 9042 | . . . . 5 ⊢ (∩ 𝐹 ≈ 1o ↔ ∃𝑥∩ 𝐹 = {𝑥}) | |
12 | 9, 10, 11 | 3imtr4g 295 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ → ∩ 𝐹 ≈ 1o)) |
13 | 12 | imp 405 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≈ 1o) |
14 | endom 8996 | . . 3 ⊢ (∩ 𝐹 ≈ 1o → ∩ 𝐹 ≼ 1o) | |
15 | 13, 14 | syl 17 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∩ 𝐹 ≠ ∅) → ∩ 𝐹 ≼ 1o) |
16 | 1on 8495 | . . 3 ⊢ 1o ∈ On | |
17 | 0domg 9121 | . . 3 ⊢ (1o ∈ On → ∅ ≼ 1o) | |
18 | 16, 17 | mp1i 13 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∅ ≼ 1o) |
19 | 1, 15, 18 | pm2.61ne 3017 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2930 ⊆ wss 3939 ∅c0 4316 {csn 4622 ∩ cint 4942 class class class wbr 5141 Oncon0 6362 ‘cfv 6541 1oc1o 8476 ≈ cen 8957 ≼ cdom 8958 UFilcufil 23819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1o 8483 df-en 8961 df-dom 8962 df-fbas 21278 df-fg 21279 df-fil 23766 df-ufil 23821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |