| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1div0OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 1div0 11787 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 1div0OLD | ⊢ (1 / 0) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-div 11786 | . . 3 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 2 | riotaex 7316 | . . 3 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
| 3 | 1, 2 | dmmpo 8012 | . 2 ⊢ dom / = (ℂ × (ℂ ∖ {0})) |
| 4 | eqid 2733 | . . 3 ⊢ 0 = 0 | |
| 5 | eldifsni 4743 | . . . . 5 ⊢ (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0) |
| 7 | 6 | necon2bi 2959 | . . 3 ⊢ (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) |
| 8 | 4, 7 | ax-mp 5 | . 2 ⊢ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) |
| 9 | ndmovg 7538 | . 2 ⊢ ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅) | |
| 10 | 3, 8, 9 | mp2an 692 | 1 ⊢ (1 / 0) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 ∅c0 4282 {csn 4577 × cxp 5619 dom cdm 5621 ℩crio 7311 (class class class)co 7355 ℂcc 11015 0cc0 11017 1c1 11018 · cmul 11022 / cdiv 11785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-div 11786 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |