| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1div0OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 1div0 11837 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 1div0OLD | ⊢ (1 / 0) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-div 11836 | . . 3 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
| 2 | riotaex 7348 | . . 3 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
| 3 | 1, 2 | dmmpo 8050 | . 2 ⊢ dom / = (ℂ × (ℂ ∖ {0})) |
| 4 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 5 | eldifsni 4754 | . . . . 5 ⊢ (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0) |
| 7 | 6 | necon2bi 2955 | . . 3 ⊢ (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) |
| 8 | 4, 7 | ax-mp 5 | . 2 ⊢ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) |
| 9 | ndmovg 7572 | . 2 ⊢ ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅) | |
| 10 | 3, 8, 9 | mp2an 692 | 1 ⊢ (1 / 0) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ∅c0 4296 {csn 4589 × cxp 5636 dom cdm 5638 ℩crio 7343 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-div 11836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |