MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div0OLD Structured version   Visualization version   GIF version

Theorem 1div0OLD 11950
Description: Obsolete version of 1div0 11949 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
1div0OLD (1 / 0) = ∅

Proof of Theorem 1div0OLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11948 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 riotaex 7408 . . 3 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
31, 2dmmpo 8112 . 2 dom / = (ℂ × (ℂ ∖ {0}))
4 eqid 2740 . . 3 0 = 0
5 eldifsni 4815 . . . . 5 (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0)
65adantl 481 . . . 4 ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0)
76necon2bi 2977 . . 3 (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})))
84, 7ax-mp 5 . 2 ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))
9 ndmovg 7633 . 2 ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅)
103, 8, 9mp2an 691 1 (1 / 0) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  c0 4352  {csn 4648   × cxp 5698  dom cdm 5700  crio 7403  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-div 11948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator