| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isphld.l | . 2
⊢ (𝜑 → 𝑊 ∈ LVec) | 
| 2 |  | isphld.f | . . 3
⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) | 
| 3 |  | isphld.r | . . 3
⊢ (𝜑 → 𝐹 ∈ *-Ring) | 
| 4 | 2, 3 | eqeltrrd 2841 | . 2
⊢ (𝜑 → (Scalar‘𝑊) ∈
*-Ring) | 
| 5 |  | oveq1 7439 | . . . . . 6
⊢ (𝑦 = 𝑤 → (𝑦(·𝑖‘𝑊)𝑥) = (𝑤(·𝑖‘𝑊)𝑥)) | 
| 6 | 5 | cbvmptv 5254 | . . . . 5
⊢ (𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) = (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑥)) | 
| 7 |  | isphld.cl | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝐼𝑦) ∈ 𝐾) | 
| 8 | 7 | 3expib 1122 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥𝐼𝑦) ∈ 𝐾)) | 
| 9 |  | isphld.v | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) | 
| 10 | 9 | eleq2d 2826 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝑉 ↔ 𝑥 ∈ (Base‘𝑊))) | 
| 11 | 9 | eleq2d 2826 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑦 ∈ 𝑉 ↔ 𝑦 ∈ (Base‘𝑊))) | 
| 12 | 10, 11 | anbi12d 632 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)))) | 
| 13 |  | isphld.i | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐼 =
(·𝑖‘𝑊)) | 
| 14 | 13 | oveqd 7449 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥𝐼𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | 
| 15 |  | isphld.k | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐾 = (Base‘𝐹)) | 
| 16 | 2 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Base‘𝐹) =
(Base‘(Scalar‘𝑊))) | 
| 17 | 15, 16 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) | 
| 18 | 14, 17 | eleq12d 2834 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥𝐼𝑦) ∈ 𝐾 ↔ (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))) | 
| 19 | 8, 12, 18 | 3imtr3d 293 | . . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊)))) | 
| 20 | 19 | impl 455 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))) | 
| 21 | 20 | an32s 652 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑥(·𝑖‘𝑊)𝑦) ∈ (Base‘(Scalar‘𝑊))) | 
| 22 |  | oveq1 7439 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑤(·𝑖‘𝑊)𝑦) = (𝑥(·𝑖‘𝑊)𝑦)) | 
| 23 | 22 | cbvmptv 5254 | . . . . . . . . . . 11
⊢ (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)) = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥(·𝑖‘𝑊)𝑦)) | 
| 24 | 21, 23 | fmptd 7133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))) | 
| 25 | 24 | ralrimiva 3145 | . . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑊)(𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))) | 
| 26 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑤(·𝑖‘𝑊)𝑦) = (𝑤(·𝑖‘𝑊)𝑧)) | 
| 27 | 26 | mpteq2dv 5243 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)) = (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))) | 
| 28 | 27 | feq1d 6719 | . . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ↔ (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)))) | 
| 29 | 28 | rspccva 3620 | . . . . . . . . 9
⊢
((∀𝑦 ∈
(Base‘𝑊)(𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑦)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))) | 
| 30 | 25, 29 | sylan 580 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))) | 
| 31 |  | eqidd 2737 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (Scalar‘𝑊) = (Scalar‘𝑊)) | 
| 32 |  | isphld.d | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐾 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))) | 
| 33 | 32 | 3exp 1119 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑞 ∈ 𝐾 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))))) | 
| 34 | 17 | eleq2d 2826 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑞 ∈ 𝐾 ↔ 𝑞 ∈ (Base‘(Scalar‘𝑊)))) | 
| 35 |  | 3anrot 1099 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) | 
| 36 | 9 | eleq2d 2826 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑧 ∈ 𝑉 ↔ 𝑧 ∈ (Base‘𝑊))) | 
| 37 | 36, 10, 11 | 3anbi123d 1437 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑧 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) ↔ (𝑧 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)))) | 
| 38 | 35, 37 | bitr3id 285 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) ↔ (𝑧 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)))) | 
| 39 |  | isphld.a | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → + =
(+g‘𝑊)) | 
| 40 |  | isphld.s | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) | 
| 41 | 40 | oveqd 7449 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑞 · 𝑥) = (𝑞( ·𝑠
‘𝑊)𝑥)) | 
| 42 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑦 = 𝑦) | 
| 43 | 39, 41, 42 | oveq123d 7453 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((𝑞 · 𝑥) + 𝑦) = ((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) | 
| 44 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑧 = 𝑧) | 
| 45 | 13, 43, 44 | oveq123d 7453 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧)) | 
| 46 |  | isphld.p | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ⨣ =
(+g‘𝐹)) | 
| 47 | 2 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (+g‘𝐹) =
(+g‘(Scalar‘𝑊))) | 
| 48 | 46, 47 | eqtrd 2776 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ⨣ =
(+g‘(Scalar‘𝑊))) | 
| 49 |  | isphld.t | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → × =
(.r‘𝐹)) | 
| 50 | 2 | fveq2d 6909 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (.r‘𝐹) =
(.r‘(Scalar‘𝑊))) | 
| 51 | 49, 50 | eqtrd 2776 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → × =
(.r‘(Scalar‘𝑊))) | 
| 52 |  | eqidd 2737 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑞 = 𝑞) | 
| 53 | 13 | oveqd 7449 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥𝐼𝑧) = (𝑥(·𝑖‘𝑊)𝑧)) | 
| 54 | 51, 52, 53 | oveq123d 7453 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑞 × (𝑥𝐼𝑧)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))) | 
| 55 | 13 | oveqd 7449 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑦𝐼𝑧) = (𝑦(·𝑖‘𝑊)𝑧)) | 
| 56 | 48, 54, 55 | oveq123d 7453 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) | 
| 57 | 45, 56 | eqeq12d 2752 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧)) ↔ (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))) | 
| 58 | 38, 57 | imbi12d 344 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉) → (((𝑞 · 𝑥) + 𝑦)𝐼𝑧) = ((𝑞 × (𝑥𝐼𝑧)) ⨣ (𝑦𝐼𝑧))) ↔ ((𝑧 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))))) | 
| 59 | 33, 34, 58 | 3imtr3d 293 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑞 ∈ (Base‘(Scalar‘𝑊)) → ((𝑧 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))))) | 
| 60 | 59 | imp31 417 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑧 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) | 
| 61 | 60 | 3exp2 1354 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ (Base‘(Scalar‘𝑊))) → (𝑧 ∈ (Base‘𝑊) → (𝑥 ∈ (Base‘𝑊) → (𝑦 ∈ (Base‘𝑊) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))))) | 
| 62 | 61 | impancom 451 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝑞 ∈ (Base‘(Scalar‘𝑊)) → (𝑥 ∈ (Base‘𝑊) → (𝑦 ∈ (Base‘𝑊) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧)))))) | 
| 63 | 62 | 3imp2 1349 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) | 
| 64 |  | lveclmod 21106 | . . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | 
| 65 | 1, 64 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑊 ∈ LMod) | 
| 66 | 65 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod) | 
| 67 | 66 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑊 ∈ LMod) | 
| 68 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 69 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) | 
| 70 | 68, 69 | lss1 20937 | . . . . . . . . . . . . 13
⊢ (𝑊 ∈ LMod →
(Base‘𝑊) ∈
(LSubSp‘𝑊)) | 
| 71 | 67, 70 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (Base‘𝑊) ∈ (LSubSp‘𝑊)) | 
| 72 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) | 
| 73 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | 
| 74 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢
(+g‘𝑊) = (+g‘𝑊) | 
| 75 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) | 
| 76 | 72, 73, 74, 75, 69 | lsscl 20941 | . . . . . . . . . . . 12
⊢
(((Base‘𝑊)
∈ (LSubSp‘𝑊)
∧ (𝑞 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) | 
| 77 | 71, 76 | sylancom 588 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ (Base‘𝑊)) | 
| 78 |  | oveq1 7439 | . . . . . . . . . . . 12
⊢ (𝑤 = ((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) → (𝑤(·𝑖‘𝑊)𝑧) = (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧)) | 
| 79 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) = (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) | 
| 80 |  | ovex 7465 | . . . . . . . . . . . 12
⊢ (𝑤(·𝑖‘𝑊)𝑧) ∈ V | 
| 81 | 78, 79, 80 | fvmpt3i 7020 | . . . . . . . . . . 11
⊢ (((𝑞(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ (Base‘𝑊) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧)) | 
| 82 | 77, 81 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = (((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)(·𝑖‘𝑊)𝑧)) | 
| 83 |  | simpr2 1195 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) | 
| 84 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑥 → (𝑤(·𝑖‘𝑊)𝑧) = (𝑥(·𝑖‘𝑊)𝑧)) | 
| 85 | 84, 79, 80 | fvmpt3i 7020 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ (Base‘𝑊) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥) = (𝑥(·𝑖‘𝑊)𝑧)) | 
| 86 | 83, 85 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥) = (𝑥(·𝑖‘𝑊)𝑧)) | 
| 87 | 86 | oveq2d 7448 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥)) = (𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))) | 
| 88 |  | simpr3 1196 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) | 
| 89 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑦 → (𝑤(·𝑖‘𝑊)𝑧) = (𝑦(·𝑖‘𝑊)𝑧)) | 
| 90 | 89, 79, 80 | fvmpt3i 7020 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ (Base‘𝑊) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦) = (𝑦(·𝑖‘𝑊)𝑧)) | 
| 91 | 88, 90 | syl 17 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦) = (𝑦(·𝑖‘𝑊)𝑧)) | 
| 92 | 87, 91 | oveq12d 7450 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥))(+g‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦)) = ((𝑞(.r‘(Scalar‘𝑊))(𝑥(·𝑖‘𝑊)𝑧))(+g‘(Scalar‘𝑊))(𝑦(·𝑖‘𝑊)𝑧))) | 
| 93 | 63, 82, 92 | 3eqtr4d 2786 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) ∧ (𝑞 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥))(+g‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦))) | 
| 94 | 93 | ralrimivvva 3204 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥))(+g‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦))) | 
| 95 | 72 | lmodring 20867 | . . . . . . . . . . 11
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) | 
| 96 |  | rlmlmod 21211 | . . . . . . . . . . 11
⊢
((Scalar‘𝑊)
∈ Ring → (ringLMod‘(Scalar‘𝑊)) ∈ LMod) | 
| 97 | 65, 95, 96 | 3syl 18 | . . . . . . . . . 10
⊢ (𝜑 →
(ringLMod‘(Scalar‘𝑊)) ∈ LMod) | 
| 98 | 97 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) →
(ringLMod‘(Scalar‘𝑊)) ∈ LMod) | 
| 99 |  | rlmbas 21201 | . . . . . . . . . 10
⊢
(Base‘(Scalar‘𝑊)) =
(Base‘(ringLMod‘(Scalar‘𝑊))) | 
| 100 |  | fvex 6918 | . . . . . . . . . . 11
⊢
(Scalar‘𝑊)
∈ V | 
| 101 |  | rlmsca 21206 | . . . . . . . . . . 11
⊢
((Scalar‘𝑊)
∈ V → (Scalar‘𝑊) =
(Scalar‘(ringLMod‘(Scalar‘𝑊)))) | 
| 102 | 100, 101 | ax-mp 5 | . . . . . . . . . 10
⊢
(Scalar‘𝑊) =
(Scalar‘(ringLMod‘(Scalar‘𝑊))) | 
| 103 |  | rlmplusg 21202 | . . . . . . . . . 10
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(ringLMod‘(Scalar‘𝑊))) | 
| 104 |  | rlmvsca 21208 | . . . . . . . . . 10
⊢
(.r‘(Scalar‘𝑊)) = ( ·𝑠
‘(ringLMod‘(Scalar‘𝑊))) | 
| 105 | 68, 99, 72, 102, 73, 74, 103, 75, 104 | islmhm2 21038 | . . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧
(ringLMod‘(Scalar‘𝑊)) ∈ LMod) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ↔ ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥))(+g‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦))))) | 
| 106 | 66, 98, 105 | syl2anc 584 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ↔ ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)):(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ (Scalar‘𝑊) = (Scalar‘𝑊) ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘((𝑞( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑞(.r‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑥))(+g‘(Scalar‘𝑊))((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧))‘𝑦))))) | 
| 107 | 30, 31, 94, 106 | mpbir3and 1342 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊)))) | 
| 108 | 107 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝑊)(𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊)))) | 
| 109 |  | oveq2 7440 | . . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑤(·𝑖‘𝑊)𝑧) = (𝑤(·𝑖‘𝑊)𝑥)) | 
| 110 | 109 | mpteq2dv 5243 | . . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) = (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑥))) | 
| 111 | 110 | eleq1d 2825 | . . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ↔ (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))))) | 
| 112 | 111 | rspccva 3620 | . . . . . 6
⊢
((∀𝑧 ∈
(Base‘𝑊)(𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑧)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊)))) | 
| 113 | 108, 112 | sylan 580 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑤 ∈ (Base‘𝑊) ↦ (𝑤(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊)))) | 
| 114 | 6, 113 | eqeltrid 2844 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊)))) | 
| 115 |  | isphld.ns | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ (𝑥𝐼𝑥) = 𝑂) → 𝑥 = 0 ) | 
| 116 | 115 | 3exp 1119 | . . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑉 → ((𝑥𝐼𝑥) = 𝑂 → 𝑥 = 0 ))) | 
| 117 | 13 | oveqd 7449 | . . . . . . . 8
⊢ (𝜑 → (𝑥𝐼𝑥) = (𝑥(·𝑖‘𝑊)𝑥)) | 
| 118 |  | isphld.o | . . . . . . . . 9
⊢ (𝜑 → 𝑂 = (0g‘𝐹)) | 
| 119 | 2 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝜑 → (0g‘𝐹) =
(0g‘(Scalar‘𝑊))) | 
| 120 | 118, 119 | eqtrd 2776 | . . . . . . . 8
⊢ (𝜑 → 𝑂 = (0g‘(Scalar‘𝑊))) | 
| 121 | 117, 120 | eqeq12d 2752 | . . . . . . 7
⊢ (𝜑 → ((𝑥𝐼𝑥) = 𝑂 ↔ (𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)))) | 
| 122 |  | isphld.z | . . . . . . . 8
⊢ (𝜑 → 0 =
(0g‘𝑊)) | 
| 123 | 122 | eqeq2d 2747 | . . . . . . 7
⊢ (𝜑 → (𝑥 = 0 ↔ 𝑥 = (0g‘𝑊))) | 
| 124 | 121, 123 | imbi12d 344 | . . . . . 6
⊢ (𝜑 → (((𝑥𝐼𝑥) = 𝑂 → 𝑥 = 0 ) ↔ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)))) | 
| 125 | 116, 10, 124 | 3imtr3d 293 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ (Base‘𝑊) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)))) | 
| 126 | 125 | imp 406 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊))) | 
| 127 |  | isphld.cj | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥)) | 
| 128 | 127 | 3expib 1122 | . . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥))) | 
| 129 |  | isphld.c | . . . . . . . . . 10
⊢ (𝜑 → ∗ =
(*𝑟‘𝐹)) | 
| 130 | 2 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝜑 →
(*𝑟‘𝐹) =
(*𝑟‘(Scalar‘𝑊))) | 
| 131 | 129, 130 | eqtrd 2776 | . . . . . . . . 9
⊢ (𝜑 → ∗ =
(*𝑟‘(Scalar‘𝑊))) | 
| 132 | 131, 14 | fveq12d 6912 | . . . . . . . 8
⊢ (𝜑 → ( ∗ ‘(𝑥𝐼𝑦)) =
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦))) | 
| 133 | 13 | oveqd 7449 | . . . . . . . 8
⊢ (𝜑 → (𝑦𝐼𝑥) = (𝑦(·𝑖‘𝑊)𝑥)) | 
| 134 | 132, 133 | eqeq12d 2752 | . . . . . . 7
⊢ (𝜑 → (( ∗ ‘(𝑥𝐼𝑦)) = (𝑦𝐼𝑥) ↔
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) | 
| 135 | 128, 12, 134 | 3imtr3d 293 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) →
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) | 
| 136 | 135 | expdimp 452 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑦 ∈ (Base‘𝑊) →
((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) | 
| 137 | 136 | ralrimiv 3144 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)) | 
| 138 | 114, 126,
137 | 3jca 1128 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑊)) → ((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) | 
| 139 | 138 | ralrimiva 3145 | . 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥))) | 
| 140 |  | eqid 2736 | . . 3
⊢
(·𝑖‘𝑊) =
(·𝑖‘𝑊) | 
| 141 |  | eqid 2736 | . . 3
⊢
(0g‘𝑊) = (0g‘𝑊) | 
| 142 |  | eqid 2736 | . . 3
⊢
(*𝑟‘(Scalar‘𝑊)) =
(*𝑟‘(Scalar‘𝑊)) | 
| 143 |  | eqid 2736 | . . 3
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) | 
| 144 | 68, 72, 140, 141, 142, 143 | isphl 21647 | . 2
⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧
(Scalar‘𝑊) ∈
*-Ring ∧ ∀𝑥
∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘(Scalar‘𝑊))) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘(Scalar‘𝑊)) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘(Scalar‘𝑊))‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) | 
| 145 | 1, 4, 139, 144 | syl3anbrc 1343 | 1
⊢ (𝜑 → 𝑊 ∈ PreHil) |