MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulconst Structured version   Visualization version   GIF version

Theorem modmulconst 16290
Description: Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
Assertion
Ref Expression
modmulconst (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))

Proof of Theorem modmulconst
StepHypRef Expression
1 nnz 12631 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
21adantl 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
3 zsubcl 12656 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
433adant3 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
54adantr 479 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐴𝐵) ∈ ℤ)
6 nnz 12631 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
7 nnne0 12298 . . . . . . 7 (𝐶 ∈ ℕ → 𝐶 ≠ 0)
86, 7jca 510 . . . . . 6 (𝐶 ∈ ℕ → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
983ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
109adantr 479 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0))
11 dvdscmulr 16287 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ 𝑀 ∥ (𝐴𝐵)))
1211bicomd 222 . . . 4 ((𝑀 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ ∧ (𝐶 ∈ ℤ ∧ 𝐶 ≠ 0)) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
132, 5, 10, 12syl3anc 1368 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵))))
14 zcn 12615 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
15 zcn 12615 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
16 nncn 12272 . . . . . . . 8 (𝐶 ∈ ℕ → 𝐶 ∈ ℂ)
1714, 15, 163anim123i 1148 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
18 3anrot 1097 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
1917, 18sylibr 233 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
20 subdi 11697 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2119, 20syl 17 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2221adantr 479 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · (𝐴𝐵)) = ((𝐶 · 𝐴) − (𝐶 · 𝐵)))
2322breq2d 5165 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐶 · 𝑀) ∥ (𝐶 · (𝐴𝐵)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
2413, 23bitrd 278 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (𝐴𝐵) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
25 simpr 483 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
26 simp1 1133 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
2726adantr 479 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐴 ∈ ℤ)
28 simp2 1134 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2928adantr 479 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐵 ∈ ℤ)
30 moddvds 16267 . . 3 ((𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
3125, 27, 29, 30syl3anc 1368 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ 𝑀 ∥ (𝐴𝐵)))
32 simpl3 1190 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → 𝐶 ∈ ℕ)
3332, 25nnmulcld 12317 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝑀) ∈ ℕ)
3463ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
3534, 26zmulcld 12724 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3635adantr 479 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐴) ∈ ℤ)
3734, 28zmulcld 12724 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
3837adantr 479 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (𝐶 · 𝐵) ∈ ℤ)
39 moddvds 16267 . . 3 (((𝐶 · 𝑀) ∈ ℕ ∧ (𝐶 · 𝐴) ∈ ℤ ∧ (𝐶 · 𝐵) ∈ ℤ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4033, 36, 38, 39syl3anc 1368 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → (((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀)) ↔ (𝐶 · 𝑀) ∥ ((𝐶 · 𝐴) − (𝐶 · 𝐵))))
4124, 31, 403bitr4d 310 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ 𝑀 ∈ ℕ) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ ((𝐶 · 𝐴) mod (𝐶 · 𝑀)) = ((𝐶 · 𝐵) mod (𝐶 · 𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930   class class class wbr 5153  (class class class)co 7424  cc 11156  0cc0 11158   · cmul 11163  cmin 11494  cn 12264  cz 12610   mod cmo 13889  cdvds 16256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-sup 9485  df-inf 9486  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-rp 13029  df-fl 13812  df-mod 13890  df-dvds 16257
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator