MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphassr Structured version   Visualization version   GIF version

Theorem cphassr 23808
Description: "Associative" law for second argument of inner product (compare cphass 23807). See ipassr 20778, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphass.f 𝐹 = (Scalar‘𝑊)
cphass.k 𝐾 = (Base‘𝐹)
cphass.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
cphassr ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶)))

Proof of Theorem cphassr
StepHypRef Expression
1 cphclm 23785 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
21adantr 484 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝑊 ∈ ℂMod)
3 cphass.f . . . . 5 𝐹 = (Scalar‘𝑊)
43clmmul 23671 . . . 4 (𝑊 ∈ ℂMod → · = (.r𝐹))
52, 4syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → · = (.r𝐹))
6 eqidd 2825 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) = (𝐵 , 𝐶))
73clmcj 23672 . . . . 5 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
82, 7syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ∗ = (*𝑟𝐹))
98fveq1d 6655 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (∗‘𝐴) = ((*𝑟𝐹)‘𝐴))
105, 6, 9oveq123d 7161 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐵 , 𝐶) · (∗‘𝐴)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
11 cphass.k . . . . . . 7 𝐾 = (Base‘𝐹)
123, 11clmsscn 23675 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
132, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐾 ⊆ ℂ)
14 simpr1 1191 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴𝐾)
1513, 14sseldd 3952 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴 ∈ ℂ)
1615cjcld 14546 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (∗‘𝐴) ∈ ℂ)
17 cphipcj.v . . . . 5 𝑉 = (Base‘𝑊)
18 cphipcj.h . . . . 5 , = (·𝑖𝑊)
1917, 18cphipcl 23787 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ ℂ)
20193adant3r1 1179 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ ℂ)
2116, 20mulcomd 10649 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((∗‘𝐴) · (𝐵 , 𝐶)) = ((𝐵 , 𝐶) · (∗‘𝐴)))
22 cphphl 23767 . . 3 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
23 3anrot 1097 . . . 4 ((𝐴𝐾𝐵𝑉𝐶𝑉) ↔ (𝐵𝑉𝐶𝑉𝐴𝐾))
2423biimpi 219 . . 3 ((𝐴𝐾𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉𝐴𝐾))
25 cphass.s . . . 4 · = ( ·𝑠𝑊)
26 eqid 2824 . . . 4 (.r𝐹) = (.r𝐹)
27 eqid 2824 . . . 4 (*𝑟𝐹) = (*𝑟𝐹)
283, 18, 17, 11, 25, 26, 27ipassr 20778 . . 3 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐴𝐾)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
2922, 24, 28syl2an 598 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
3010, 21, 293eqtr4rd 2870 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3918  cfv 6338  (class class class)co 7140  cc 10522   · cmul 10529  ccj 14446  Basecbs 16474  .rcmulr 16557  *𝑟cstv 16558  Scalarcsca 16559   ·𝑠 cvsca 16560  ·𝑖cip 16561  PreHilcphl 20756  ℂModcclm 23658  ℂPreHilccph 23762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446  ax-cnex 10580  ax-resscn 10581  ax-1cn 10582  ax-icn 10583  ax-addcl 10584  ax-addrcl 10585  ax-mulcl 10586  ax-mulrcl 10587  ax-mulcom 10588  ax-addass 10589  ax-mulass 10590  ax-distr 10591  ax-i2m1 10592  ax-1ne0 10593  ax-1rid 10594  ax-rnegex 10595  ax-rrecex 10596  ax-cnre 10597  ax-pre-lttri 10598  ax-pre-lttrn 10599  ax-pre-ltadd 10600  ax-pre-mulgt0 10601  ax-addf 10603  ax-mulf 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4822  df-int 4860  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-tr 5156  df-id 5443  df-eprel 5448  df-po 5457  df-so 5458  df-fr 5497  df-we 5499  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7674  df-2nd 7675  df-tpos 7877  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-1o 8087  df-oadd 8091  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-fin 8498  df-pnf 10664  df-mnf 10665  df-xr 10666  df-ltxr 10667  df-le 10668  df-sub 10859  df-neg 10860  df-div 11285  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14449  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-starv 16571  df-sca 16572  df-vsca 16573  df-ip 16574  df-tset 16575  df-ple 16576  df-ds 16578  df-unif 16579  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mhm 17947  df-grp 18097  df-subg 18267  df-ghm 18347  df-cmn 18899  df-mgp 19231  df-ur 19243  df-ring 19290  df-cring 19291  df-oppr 19364  df-dvdsr 19382  df-unit 19383  df-rnghom 19458  df-drng 19492  df-subrg 19521  df-staf 19604  df-srng 19605  df-lmod 19624  df-lmhm 19782  df-lvec 19863  df-sra 19932  df-rgmod 19933  df-cnfld 20534  df-phl 20758  df-nlm 23184  df-clm 23659  df-cph 23764
This theorem is referenced by:  cph2ass  23809  cphassir  23811  pjthlem1  24032
  Copyright terms: Public domain W3C validator