MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphassr Structured version   Visualization version   GIF version

Theorem cphassr 23419
Description: "Associative" law for second argument of inner product (compare cphass 23418). See ipassr 20389, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
cphipcj.h , = (·𝑖𝑊)
cphipcj.v 𝑉 = (Base‘𝑊)
cphass.f 𝐹 = (Scalar‘𝑊)
cphass.k 𝐾 = (Base‘𝐹)
cphass.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
cphassr ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶)))

Proof of Theorem cphassr
StepHypRef Expression
1 cphclm 23396 . . . . 5 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
21adantr 474 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝑊 ∈ ℂMod)
3 cphass.f . . . . 5 𝐹 = (Scalar‘𝑊)
43clmmul 23282 . . . 4 (𝑊 ∈ ℂMod → · = (.r𝐹))
52, 4syl 17 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → · = (.r𝐹))
6 eqidd 2779 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) = (𝐵 , 𝐶))
73clmcj 23283 . . . . 5 (𝑊 ∈ ℂMod → ∗ = (*𝑟𝐹))
82, 7syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ∗ = (*𝑟𝐹))
98fveq1d 6448 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (∗‘𝐴) = ((*𝑟𝐹)‘𝐴))
105, 6, 9oveq123d 6943 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐵 , 𝐶) · (∗‘𝐴)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
11 cphass.k . . . . . . 7 𝐾 = (Base‘𝐹)
123, 11clmsscn 23286 . . . . . 6 (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ)
132, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐾 ⊆ ℂ)
14 simpr1 1205 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴𝐾)
1513, 14sseldd 3822 . . . 4 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴 ∈ ℂ)
1615cjcld 14343 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (∗‘𝐴) ∈ ℂ)
17 cphipcj.v . . . . 5 𝑉 = (Base‘𝑊)
18 cphipcj.h . . . . 5 , = (·𝑖𝑊)
1917, 18cphipcl 23398 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝐵𝑉𝐶𝑉) → (𝐵 , 𝐶) ∈ ℂ)
20193adant3r1 1190 . . 3 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , 𝐶) ∈ ℂ)
2116, 20mulcomd 10398 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((∗‘𝐴) · (𝐵 , 𝐶)) = ((𝐵 , 𝐶) · (∗‘𝐴)))
22 cphphl 23378 . . 3 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
23 3anrot 1085 . . . 4 ((𝐴𝐾𝐵𝑉𝐶𝑉) ↔ (𝐵𝑉𝐶𝑉𝐴𝐾))
2423biimpi 208 . . 3 ((𝐴𝐾𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉𝐴𝐾))
25 cphass.s . . . 4 · = ( ·𝑠𝑊)
26 eqid 2778 . . . 4 (.r𝐹) = (.r𝐹)
27 eqid 2778 . . . 4 (*𝑟𝐹) = (*𝑟𝐹)
283, 18, 17, 11, 25, 26, 27ipassr 20389 . . 3 ((𝑊 ∈ PreHil ∧ (𝐵𝑉𝐶𝑉𝐴𝐾)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
2922, 24, 28syl2an 589 . 2 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r𝐹)((*𝑟𝐹)‘𝐴)))
3010, 21, 293eqtr4rd 2825 1 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wss 3792  cfv 6135  (class class class)co 6922  cc 10270   · cmul 10277  ccj 14243  Basecbs 16255  .rcmulr 16339  *𝑟cstv 16340  Scalarcsca 16341   ·𝑠 cvsca 16342  ·𝑖cip 16343  PreHilcphl 20367  ℂModcclm 23269  ℂPreHilccph 23373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-grp 17812  df-subg 17975  df-ghm 18042  df-cmn 18581  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-rnghom 19104  df-drng 19141  df-subrg 19170  df-staf 19237  df-srng 19238  df-lmod 19257  df-lmhm 19417  df-lvec 19498  df-sra 19569  df-rgmod 19570  df-cnfld 20143  df-phl 20369  df-nlm 22799  df-clm 23270  df-cph 23375
This theorem is referenced by:  cph2ass  23420  cphassir  23422  pjthlem1  23643
  Copyright terms: Public domain W3C validator