Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cphassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare cphass 24375). See ipassr 20851, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | ⊢ , = (·𝑖‘𝑊) |
cphipcj.v | ⊢ 𝑉 = (Base‘𝑊) |
cphass.f | ⊢ 𝐹 = (Scalar‘𝑊) |
cphass.k | ⊢ 𝐾 = (Base‘𝐹) |
cphass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
Ref | Expression |
---|---|
cphassr | ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphclm 24353 | . . . . 5 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ ℂMod) |
3 | cphass.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | clmmul 24238 | . . . 4 ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) |
5 | 2, 4 | syl 17 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → · = (.r‘𝐹)) |
6 | eqidd 2739 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐶) = (𝐵 , 𝐶)) | |
7 | 3 | clmcj 24239 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ∗ = (*𝑟‘𝐹)) |
9 | 8 | fveq1d 6776 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∗‘𝐴) = ((*𝑟‘𝐹)‘𝐴)) |
10 | 5, 6, 9 | oveq123d 7296 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐵 , 𝐶) · (∗‘𝐴)) = ((𝐵 , 𝐶)(.r‘𝐹)((*𝑟‘𝐹)‘𝐴))) |
11 | cphass.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
12 | 3, 11 | clmsscn 24242 | . . . . . 6 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐾 ⊆ ℂ) |
14 | simpr1 1193 | . . . . 5 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
15 | 13, 14 | sseldd 3922 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ ℂ) |
16 | 15 | cjcld 14907 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (∗‘𝐴) ∈ ℂ) |
17 | cphipcj.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
18 | cphipcj.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
19 | 17, 18 | cphipcl 24355 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ ℂ) |
20 | 19 | 3adant3r1 1181 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐶) ∈ ℂ) |
21 | 16, 20 | mulcomd 10996 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((∗‘𝐴) · (𝐵 , 𝐶)) = ((𝐵 , 𝐶) · (∗‘𝐴))) |
22 | cphphl 24335 | . . 3 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
23 | 3anrot 1099 | . . . 4 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ↔ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾)) | |
24 | 23 | biimpi 215 | . . 3 ⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾)) |
25 | cphass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
26 | eqid 2738 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
27 | eqid 2738 | . . . 4 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
28 | 3, 18, 17, 11, 25, 26, 27 | ipassr 20851 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝐾)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r‘𝐹)((*𝑟‘𝐹)‘𝐴))) |
29 | 22, 24, 28 | syl2an 596 | . 2 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((𝐵 , 𝐶)(.r‘𝐹)((*𝑟‘𝐹)‘𝐴))) |
30 | 10, 21, 29 | 3eqtr4rd 2789 | 1 ⊢ ((𝑊 ∈ ℂPreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , (𝐴 · 𝐶)) = ((∗‘𝐴) · (𝐵 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 · cmul 10876 ∗ccj 14807 Basecbs 16912 .rcmulr 16963 *𝑟cstv 16964 Scalarcsca 16965 ·𝑠 cvsca 16966 ·𝑖cip 16967 PreHilcphl 20829 ℂModcclm 24225 ℂPreHilccph 24330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-grp 18580 df-subg 18752 df-ghm 18832 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-rnghom 19959 df-drng 19993 df-subrg 20022 df-staf 20105 df-srng 20106 df-lmod 20125 df-lmhm 20284 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-phl 20831 df-nlm 23742 df-clm 24226 df-cph 24332 |
This theorem is referenced by: cph2ass 24377 cphassir 24379 pjthlem1 24601 |
Copyright terms: Public domain | W3C validator |