![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cphassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare cphass 24960). See ipassr 21419, his52 . (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
cphipcj.h | β’ , = (Β·πβπ) |
cphipcj.v | β’ π = (Baseβπ) |
cphass.f | β’ πΉ = (Scalarβπ) |
cphass.k | β’ πΎ = (BaseβπΉ) |
cphass.s | β’ Β· = ( Β·π βπ) |
Ref | Expression |
---|---|
cphassr | β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (π΅ , (π΄ Β· πΆ)) = ((ββπ΄) Β· (π΅ , πΆ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphclm 24938 | . . . . 5 β’ (π β βPreHil β π β βMod) | |
2 | 1 | adantr 480 | . . . 4 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β π β βMod) |
3 | cphass.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
4 | 3 | clmmul 24823 | . . . 4 β’ (π β βMod β Β· = (.rβπΉ)) |
5 | 2, 4 | syl 17 | . . 3 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β Β· = (.rβπΉ)) |
6 | eqidd 2732 | . . 3 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (π΅ , πΆ) = (π΅ , πΆ)) | |
7 | 3 | clmcj 24824 | . . . . 5 β’ (π β βMod β β = (*πβπΉ)) |
8 | 2, 7 | syl 17 | . . . 4 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β β = (*πβπΉ)) |
9 | 8 | fveq1d 6893 | . . 3 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (ββπ΄) = ((*πβπΉ)βπ΄)) |
10 | 5, 6, 9 | oveq123d 7433 | . 2 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β ((π΅ , πΆ) Β· (ββπ΄)) = ((π΅ , πΆ)(.rβπΉ)((*πβπΉ)βπ΄))) |
11 | cphass.k | . . . . . . 7 β’ πΎ = (BaseβπΉ) | |
12 | 3, 11 | clmsscn 24827 | . . . . . 6 β’ (π β βMod β πΎ β β) |
13 | 2, 12 | syl 17 | . . . . 5 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β πΎ β β) |
14 | simpr1 1193 | . . . . 5 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β π΄ β πΎ) | |
15 | 13, 14 | sseldd 3983 | . . . 4 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β π΄ β β) |
16 | 15 | cjcld 15148 | . . 3 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (ββπ΄) β β) |
17 | cphipcj.v | . . . . 5 β’ π = (Baseβπ) | |
18 | cphipcj.h | . . . . 5 β’ , = (Β·πβπ) | |
19 | 17, 18 | cphipcl 24940 | . . . 4 β’ ((π β βPreHil β§ π΅ β π β§ πΆ β π) β (π΅ , πΆ) β β) |
20 | 19 | 3adant3r1 1181 | . . 3 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (π΅ , πΆ) β β) |
21 | 16, 20 | mulcomd 11240 | . 2 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β ((ββπ΄) Β· (π΅ , πΆ)) = ((π΅ , πΆ) Β· (ββπ΄))) |
22 | cphphl 24920 | . . 3 β’ (π β βPreHil β π β PreHil) | |
23 | 3anrot 1099 | . . . 4 β’ ((π΄ β πΎ β§ π΅ β π β§ πΆ β π) β (π΅ β π β§ πΆ β π β§ π΄ β πΎ)) | |
24 | 23 | biimpi 215 | . . 3 β’ ((π΄ β πΎ β§ π΅ β π β§ πΆ β π) β (π΅ β π β§ πΆ β π β§ π΄ β πΎ)) |
25 | cphass.s | . . . 4 β’ Β· = ( Β·π βπ) | |
26 | eqid 2731 | . . . 4 β’ (.rβπΉ) = (.rβπΉ) | |
27 | eqid 2731 | . . . 4 β’ (*πβπΉ) = (*πβπΉ) | |
28 | 3, 18, 17, 11, 25, 26, 27 | ipassr 21419 | . . 3 β’ ((π β PreHil β§ (π΅ β π β§ πΆ β π β§ π΄ β πΎ)) β (π΅ , (π΄ Β· πΆ)) = ((π΅ , πΆ)(.rβπΉ)((*πβπΉ)βπ΄))) |
29 | 22, 24, 28 | syl2an 595 | . 2 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (π΅ , (π΄ Β· πΆ)) = ((π΅ , πΆ)(.rβπΉ)((*πβπΉ)βπ΄))) |
30 | 10, 21, 29 | 3eqtr4rd 2782 | 1 β’ ((π β βPreHil β§ (π΄ β πΎ β§ π΅ β π β§ πΆ β π)) β (π΅ , (π΄ Β· πΆ)) = ((ββπ΄) Β· (π΅ , πΆ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β wss 3948 βcfv 6543 (class class class)co 7412 βcc 11111 Β· cmul 11118 βccj 15048 Basecbs 17149 .rcmulr 17203 *πcstv 17204 Scalarcsca 17205 Β·π cvsca 17206 Β·πcip 17207 PreHilcphl 21397 βModcclm 24810 βPreHilccph 24915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-addf 11192 ax-mulf 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-seq 13972 df-exp 14033 df-cj 15051 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-minusg 18860 df-subg 19040 df-ghm 19129 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-cring 20131 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-rhm 20364 df-subrg 20460 df-drng 20503 df-staf 20597 df-srng 20598 df-lmod 20617 df-lmhm 20778 df-lvec 20859 df-sra 20931 df-rgmod 20932 df-cnfld 21146 df-phl 21399 df-nlm 24316 df-clm 24811 df-cph 24917 |
This theorem is referenced by: cph2ass 24962 cphassir 24964 pjthlem1 25186 |
Copyright terms: Public domain | W3C validator |