MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword Structured version   Visualization version   GIF version

Theorem omword 8587
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem omword
StepHypRef Expression
1 omord2 8584 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2 3anrot 1099 . . . . 5 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On))
3 omcan 8586 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵))
42, 3sylanbr 582 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵))
54bicomd 223 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))
61, 5orbi12d 918 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
7 onsseleq 6398 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
873adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
98adantr 480 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
10 omcl 8553 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·o 𝐴) ∈ On)
11 omcl 8553 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ·o 𝐵) ∈ On)
1210, 11anim12dan 619 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
1312ancoms 458 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
14133impa 1109 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
15 onsseleq 6398 . . . 4 (((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
1614, 15syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
1716adantr 480 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
186, 9, 173bitr4d 311 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wss 3931  c0 4313  Oncon0 6357  (class class class)co 7410   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489  df-omul 8490
This theorem is referenced by:  omwordi  8588  omeulem2  8600  oeeui  8619
  Copyright terms: Public domain W3C validator