![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omword | Structured version Visualization version GIF version |
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.) |
Ref | Expression |
---|---|
omword | ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omord2 7914 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ 𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))) | |
2 | 3anrot 1126 | . . . . 5 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On)) | |
3 | omcan 7916 | . . . . 5 ⊢ (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵)) | |
4 | 2, 3 | sylanbr 577 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵)) |
5 | 4 | bicomd 215 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))) |
6 | 1, 5 | orbi12d 947 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))) |
7 | onsseleq 6004 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
8 | 7 | 3adant3 1166 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
9 | 8 | adantr 474 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
10 | omcl 7883 | . . . . . . 7 ⊢ ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·o 𝐴) ∈ On) | |
11 | omcl 7883 | . . . . . . 7 ⊢ ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ·o 𝐵) ∈ On) | |
12 | 10, 11 | anim12dan 612 | . . . . . 6 ⊢ ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On)) |
13 | 12 | ancoms 452 | . . . . 5 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On)) |
14 | 13 | 3impa 1140 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On)) |
15 | onsseleq 6004 | . . . 4 ⊢ (((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))) |
17 | 16 | adantr 474 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))) |
18 | 6, 9, 17 | 3bitr4d 303 | 1 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 878 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 ∅c0 4144 Oncon0 5963 (class class class)co 6905 ·o comu 7824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-oadd 7830 df-omul 7831 |
This theorem is referenced by: omwordi 7918 omeulem2 7930 oeeui 7949 |
Copyright terms: Public domain | W3C validator |