MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword Structured version   Visualization version   GIF version

Theorem omword 7917
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))

Proof of Theorem omword
StepHypRef Expression
1 omord2 7914 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
2 3anrot 1126 . . . . 5 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ↔ (𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On))
3 omcan 7916 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵))
42, 3sylanbr 577 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) = (𝐶 ·o 𝐵) ↔ 𝐴 = 𝐵))
54bicomd 215 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵)))
61, 5orbi12d 947 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐴𝐵𝐴 = 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
7 onsseleq 6004 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
873adant3 1166 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
98adantr 474 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
10 omcl 7883 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶 ·o 𝐴) ∈ On)
11 omcl 7883 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ·o 𝐵) ∈ On)
1210, 11anim12dan 612 . . . . . 6 ((𝐶 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
1312ancoms 452 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
14133impa 1140 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On))
15 onsseleq 6004 . . . 4 (((𝐶 ·o 𝐴) ∈ On ∧ (𝐶 ·o 𝐵) ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
1614, 15syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
1716adantr 474 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵) ↔ ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵) ∨ (𝐶 ·o 𝐴) = (𝐶 ·o 𝐵))))
186, 9, 173bitr4d 303 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·o 𝐴) ⊆ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878  w3a 1111   = wceq 1656  wcel 2164  wss 3798  c0 4144  Oncon0 5963  (class class class)co 6905   ·o comu 7824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-oadd 7830  df-omul 7831
This theorem is referenced by:  omwordi  7918  omeulem2  7930  oeeui  7949
  Copyright terms: Public domain W3C validator