MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnnen Structured version   Visualization version   GIF version

Theorem qnnen 16152
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9637 . . . . . . 7 ω ∈ On
2 nnenom 13941 . . . . . . . 8 ℕ ≈ ω
32ensymi 8996 . . . . . . 7 ω ≈ ℕ
4 isnumi 9937 . . . . . . 7 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 690 . . . . . 6 ℕ ∈ dom card
6 znnen 16151 . . . . . . 7 ℤ ≈ ℕ
7 ennum 9938 . . . . . . 7 (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card))
86, 7ax-mp 5 . . . . . 6 (ℤ ∈ dom card ↔ ℕ ∈ dom card)
95, 8mpbir 230 . . . . 5 ℤ ∈ dom card
10 xpnum 9942 . . . . 5 ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card)
119, 5, 10mp2an 690 . . . 4 (ℤ × ℕ) ∈ dom card
12 eqid 2732 . . . . . 6 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦))
13 ovex 7438 . . . . . 6 (𝑥 / 𝑦) ∈ V
1412, 13fnmpoi 8052 . . . . 5 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ)
1512rnmpo 7538 . . . . . 6 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
16 elq 12930 . . . . . . 7 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
1716eqabi 2869 . . . . . 6 ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
1815, 17eqtr4i 2763 . . . . 5 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ
19 df-fo 6546 . . . . 5 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ))
2014, 18, 19mpbir2an 709 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ
21 fodomnum 10048 . . . 4 ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ)))
2211, 20, 21mp2 9 . . 3 ℚ ≼ (ℤ × ℕ)
23 nnex 12214 . . . . . 6 ℕ ∈ V
2423enref 8977 . . . . 5 ℕ ≈ ℕ
25 xpen 9136 . . . . 5 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
266, 24, 25mp2an 690 . . . 4 (ℤ × ℕ) ≈ (ℕ × ℕ)
27 xpnnen 16150 . . . 4 (ℕ × ℕ) ≈ ℕ
2826, 27entri 9000 . . 3 (ℤ × ℕ) ≈ ℕ
29 domentr 9005 . . 3 ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ)
3022, 28, 29mp2an 690 . 2 ℚ ≼ ℕ
31 qex 12941 . . 3 ℚ ∈ V
32 nnssq 12938 . . 3 ℕ ⊆ ℚ
33 ssdomg 8992 . . 3 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
3431, 32, 33mp2 9 . 2 ℕ ≼ ℚ
35 sbth 9089 . 2 ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ)
3630, 34, 35mp2an 690 1 ℚ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  Vcvv 3474  wss 3947   class class class wbr 5147   × cxp 5673  dom cdm 5675  ran crn 5676  Oncon0 6361   Fn wfn 6535  ontowfo 6538  (class class class)co 7405  cmpo 7407  ωcom 7851  cen 8932  cdom 8933  cardccrd 9926   / cdiv 11867  cn 12208  cz 12554  cq 12928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929
This theorem is referenced by:  rpnnen  16166  resdomq  16183  re2ndc  24308  ovolq  24999  opnmblALT  25111  vitali  25121  mbfimaopnlem  25163  mbfaddlem  25168  mblfinlem1  36513  irrapx1  41551  qenom  44057
  Copyright terms: Public domain W3C validator