MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnnen Structured version   Visualization version   GIF version

Theorem qnnen 15774
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9261 . . . . . . 7 ω ∈ On
2 nnenom 13553 . . . . . . . 8 ℕ ≈ ω
32ensymi 8678 . . . . . . 7 ω ≈ ℕ
4 isnumi 9562 . . . . . . 7 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 692 . . . . . 6 ℕ ∈ dom card
6 znnen 15773 . . . . . . 7 ℤ ≈ ℕ
7 ennum 9563 . . . . . . 7 (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card))
86, 7ax-mp 5 . . . . . 6 (ℤ ∈ dom card ↔ ℕ ∈ dom card)
95, 8mpbir 234 . . . . 5 ℤ ∈ dom card
10 xpnum 9567 . . . . 5 ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card)
119, 5, 10mp2an 692 . . . 4 (ℤ × ℕ) ∈ dom card
12 eqid 2737 . . . . . 6 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦))
13 ovex 7246 . . . . . 6 (𝑥 / 𝑦) ∈ V
1412, 13fnmpoi 7840 . . . . 5 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ)
1512rnmpo 7343 . . . . . 6 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
16 elq 12546 . . . . . . 7 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
1716abbi2i 2876 . . . . . 6 ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
1815, 17eqtr4i 2768 . . . . 5 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ
19 df-fo 6386 . . . . 5 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ))
2014, 18, 19mpbir2an 711 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ
21 fodomnum 9671 . . . 4 ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ)))
2211, 20, 21mp2 9 . . 3 ℚ ≼ (ℤ × ℕ)
23 nnex 11836 . . . . . 6 ℕ ∈ V
2423enref 8661 . . . . 5 ℕ ≈ ℕ
25 xpen 8809 . . . . 5 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
266, 24, 25mp2an 692 . . . 4 (ℤ × ℕ) ≈ (ℕ × ℕ)
27 xpnnen 15772 . . . 4 (ℕ × ℕ) ≈ ℕ
2826, 27entri 8682 . . 3 (ℤ × ℕ) ≈ ℕ
29 domentr 8687 . . 3 ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ)
3022, 28, 29mp2an 692 . 2 ℚ ≼ ℕ
31 qex 12557 . . 3 ℚ ∈ V
32 nnssq 12554 . . 3 ℕ ⊆ ℚ
33 ssdomg 8674 . . 3 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
3431, 32, 33mp2 9 . 2 ℕ ≼ ℚ
35 sbth 8766 . 2 ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ)
3630, 34, 35mp2an 692 1 ℚ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2110  {cab 2714  wrex 3062  Vcvv 3408  wss 3866   class class class wbr 5053   × cxp 5549  dom cdm 5551  ran crn 5552  Oncon0 6213   Fn wfn 6375  ontowfo 6378  (class class class)co 7213  cmpo 7215  ωcom 7644  cen 8623  cdom 8624  cardccrd 9551   / cdiv 11489  cn 11830  cz 12176  cq 12544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545
This theorem is referenced by:  rpnnen  15788  resdomq  15805  re2ndc  23698  ovolq  24388  opnmblALT  24500  vitali  24510  mbfimaopnlem  24552  mbfaddlem  24557  mblfinlem1  35551  irrapx1  40353  qenom  42573
  Copyright terms: Public domain W3C validator