![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qnnen | Structured version Visualization version GIF version |
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
Ref | Expression |
---|---|
qnnen | ⊢ ℚ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9715 | . . . . . . 7 ⊢ ω ∈ On | |
2 | nnenom 14031 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 9064 | . . . . . . 7 ⊢ ω ≈ ℕ |
4 | isnumi 10015 | . . . . . . 7 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
5 | 1, 3, 4 | mp2an 691 | . . . . . 6 ⊢ ℕ ∈ dom card |
6 | znnen 16260 | . . . . . . 7 ⊢ ℤ ≈ ℕ | |
7 | ennum 10016 | . . . . . . 7 ⊢ (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (ℤ ∈ dom card ↔ ℕ ∈ dom card) |
9 | 5, 8 | mpbir 231 | . . . . 5 ⊢ ℤ ∈ dom card |
10 | xpnum 10020 | . . . . 5 ⊢ ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card) | |
11 | 9, 5, 10 | mp2an 691 | . . . 4 ⊢ (ℤ × ℕ) ∈ dom card |
12 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) | |
13 | ovex 7481 | . . . . . 6 ⊢ (𝑥 / 𝑦) ∈ V | |
14 | 12, 13 | fnmpoi 8111 | . . . . 5 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) |
15 | 12 | rnmpo 7583 | . . . . . 6 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
16 | elq 13015 | . . . . . . 7 ⊢ (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)) | |
17 | 16 | eqabi 2880 | . . . . . 6 ⊢ ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
18 | 15, 17 | eqtr4i 2771 | . . . . 5 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ |
19 | df-fo 6579 | . . . . 5 ⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ)) | |
20 | 14, 18, 19 | mpbir2an 710 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ |
21 | fodomnum 10126 | . . . 4 ⊢ ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ))) | |
22 | 11, 20, 21 | mp2 9 | . . 3 ⊢ ℚ ≼ (ℤ × ℕ) |
23 | nnex 12299 | . . . . . 6 ⊢ ℕ ∈ V | |
24 | 23 | enref 9045 | . . . . 5 ⊢ ℕ ≈ ℕ |
25 | xpen 9206 | . . . . 5 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ)) | |
26 | 6, 24, 25 | mp2an 691 | . . . 4 ⊢ (ℤ × ℕ) ≈ (ℕ × ℕ) |
27 | xpnnen 16259 | . . . 4 ⊢ (ℕ × ℕ) ≈ ℕ | |
28 | 26, 27 | entri 9068 | . . 3 ⊢ (ℤ × ℕ) ≈ ℕ |
29 | domentr 9073 | . . 3 ⊢ ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ) | |
30 | 22, 28, 29 | mp2an 691 | . 2 ⊢ ℚ ≼ ℕ |
31 | qex 13026 | . . 3 ⊢ ℚ ∈ V | |
32 | nnssq 13023 | . . 3 ⊢ ℕ ⊆ ℚ | |
33 | ssdomg 9060 | . . 3 ⊢ (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ)) | |
34 | 31, 32, 33 | mp2 9 | . 2 ⊢ ℕ ≼ ℚ |
35 | sbth 9159 | . 2 ⊢ ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ) | |
36 | 30, 34, 35 | mp2an 691 | 1 ⊢ ℚ ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 dom cdm 5700 ran crn 5701 Oncon0 6395 Fn wfn 6568 –onto→wfo 6571 (class class class)co 7448 ∈ cmpo 7450 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 cardccrd 10004 / cdiv 11947 ℕcn 12293 ℤcz 12639 ℚcq 13013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 |
This theorem is referenced by: rpnnen 16275 resdomq 16292 re2ndc 24842 ovolq 25545 opnmblALT 25657 vitali 25667 mbfimaopnlem 25709 mbfaddlem 25714 mblfinlem1 37617 irrapx1 42784 qenom 45276 |
Copyright terms: Public domain | W3C validator |