Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qnnen | Structured version Visualization version GIF version |
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
Ref | Expression |
---|---|
qnnen | ⊢ ℚ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9334 | . . . . . . 7 ⊢ ω ∈ On | |
2 | nnenom 13628 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 8745 | . . . . . . 7 ⊢ ω ≈ ℕ |
4 | isnumi 9635 | . . . . . . 7 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
5 | 1, 3, 4 | mp2an 688 | . . . . . 6 ⊢ ℕ ∈ dom card |
6 | znnen 15849 | . . . . . . 7 ⊢ ℤ ≈ ℕ | |
7 | ennum 9636 | . . . . . . 7 ⊢ (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card)) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (ℤ ∈ dom card ↔ ℕ ∈ dom card) |
9 | 5, 8 | mpbir 230 | . . . . 5 ⊢ ℤ ∈ dom card |
10 | xpnum 9640 | . . . . 5 ⊢ ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card) | |
11 | 9, 5, 10 | mp2an 688 | . . . 4 ⊢ (ℤ × ℕ) ∈ dom card |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) | |
13 | ovex 7288 | . . . . . 6 ⊢ (𝑥 / 𝑦) ∈ V | |
14 | 12, 13 | fnmpoi 7883 | . . . . 5 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) |
15 | 12 | rnmpo 7385 | . . . . . 6 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
16 | elq 12619 | . . . . . . 7 ⊢ (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)) | |
17 | 16 | abbi2i 2878 | . . . . . 6 ⊢ ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
18 | 15, 17 | eqtr4i 2769 | . . . . 5 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ |
19 | df-fo 6424 | . . . . 5 ⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ)) | |
20 | 14, 18, 19 | mpbir2an 707 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ |
21 | fodomnum 9744 | . . . 4 ⊢ ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ))) | |
22 | 11, 20, 21 | mp2 9 | . . 3 ⊢ ℚ ≼ (ℤ × ℕ) |
23 | nnex 11909 | . . . . . 6 ⊢ ℕ ∈ V | |
24 | 23 | enref 8728 | . . . . 5 ⊢ ℕ ≈ ℕ |
25 | xpen 8876 | . . . . 5 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ)) | |
26 | 6, 24, 25 | mp2an 688 | . . . 4 ⊢ (ℤ × ℕ) ≈ (ℕ × ℕ) |
27 | xpnnen 15848 | . . . 4 ⊢ (ℕ × ℕ) ≈ ℕ | |
28 | 26, 27 | entri 8749 | . . 3 ⊢ (ℤ × ℕ) ≈ ℕ |
29 | domentr 8754 | . . 3 ⊢ ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ) | |
30 | 22, 28, 29 | mp2an 688 | . 2 ⊢ ℚ ≼ ℕ |
31 | qex 12630 | . . 3 ⊢ ℚ ∈ V | |
32 | nnssq 12627 | . . 3 ⊢ ℕ ⊆ ℚ | |
33 | ssdomg 8741 | . . 3 ⊢ (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ)) | |
34 | 31, 32, 33 | mp2 9 | . 2 ⊢ ℕ ≼ ℚ |
35 | sbth 8833 | . 2 ⊢ ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ) | |
36 | 30, 34, 35 | mp2an 688 | 1 ⊢ ℚ ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 × cxp 5578 dom cdm 5580 ran crn 5581 Oncon0 6251 Fn wfn 6413 –onto→wfo 6416 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 cardccrd 9624 / cdiv 11562 ℕcn 11903 ℤcz 12249 ℚcq 12617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 |
This theorem is referenced by: rpnnen 15864 resdomq 15881 re2ndc 23870 ovolq 24560 opnmblALT 24672 vitali 24682 mbfimaopnlem 24724 mbfaddlem 24729 mblfinlem1 35741 irrapx1 40566 qenom 42790 |
Copyright terms: Public domain | W3C validator |