MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnnen Structured version   Visualization version   GIF version

Theorem qnnen 16126
Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
qnnen ℚ ≈ ℕ

Proof of Theorem qnnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omelon 9545 . . . . . . 7 ω ∈ On
2 nnenom 13891 . . . . . . . 8 ℕ ≈ ω
32ensymi 8935 . . . . . . 7 ω ≈ ℕ
4 isnumi 9848 . . . . . . 7 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 692 . . . . . 6 ℕ ∈ dom card
6 znnen 16125 . . . . . . 7 ℤ ≈ ℕ
7 ennum 9849 . . . . . . 7 (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card))
86, 7ax-mp 5 . . . . . 6 (ℤ ∈ dom card ↔ ℕ ∈ dom card)
95, 8mpbir 231 . . . . 5 ℤ ∈ dom card
10 xpnum 9853 . . . . 5 ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card)
119, 5, 10mp2an 692 . . . 4 (ℤ × ℕ) ∈ dom card
12 eqid 2733 . . . . . 6 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦))
13 ovex 7387 . . . . . 6 (𝑥 / 𝑦) ∈ V
1412, 13fnmpoi 8010 . . . . 5 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ)
1512rnmpo 7487 . . . . . 6 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
16 elq 12852 . . . . . . 7 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
1716eqabi 2868 . . . . . 6 ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)}
1815, 17eqtr4i 2759 . . . . 5 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ
19 df-fo 6494 . . . . 5 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ))
2014, 18, 19mpbir2an 711 . . . 4 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ
21 fodomnum 9957 . . . 4 ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ)))
2211, 20, 21mp2 9 . . 3 ℚ ≼ (ℤ × ℕ)
23 nnex 12140 . . . . . 6 ℕ ∈ V
2423enref 8916 . . . . 5 ℕ ≈ ℕ
25 xpen 9062 . . . . 5 ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ))
266, 24, 25mp2an 692 . . . 4 (ℤ × ℕ) ≈ (ℕ × ℕ)
27 xpnnen 16124 . . . 4 (ℕ × ℕ) ≈ ℕ
2826, 27entri 8939 . . 3 (ℤ × ℕ) ≈ ℕ
29 domentr 8944 . . 3 ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ)
3022, 28, 29mp2an 692 . 2 ℚ ≼ ℕ
31 qex 12863 . . 3 ℚ ∈ V
32 nnssq 12860 . . 3 ℕ ⊆ ℚ
33 ssdomg 8931 . . 3 (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ))
3431, 32, 33mp2 9 . 2 ℕ ≼ ℚ
35 sbth 9019 . 2 ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ)
3630, 34, 35mp2an 692 1 ℚ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  wss 3898   class class class wbr 5095   × cxp 5619  dom cdm 5621  ran crn 5622  Oncon0 6313   Fn wfn 6483  ontowfo 6486  (class class class)co 7354  cmpo 7356  ωcom 7804  cen 8874  cdom 8875  cardccrd 9837   / cdiv 11783  cn 12134  cz 12477  cq 12850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-omul 8398  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-oi 9405  df-card 9841  df-acn 9844  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-q 12851
This theorem is referenced by:  rpnnen  16140  resdomq  16157  ex-chn2  18548  re2ndc  24719  ovolq  25422  opnmblALT  25534  vitali  25544  mbfimaopnlem  25586  mbfaddlem  25591  mblfinlem1  37720  irrapx1  42948  qenom  45487
  Copyright terms: Public domain W3C validator