| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qnnen | Structured version Visualization version GIF version | ||
| Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
| Ref | Expression |
|---|---|
| qnnen | ⊢ ℚ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9665 | . . . . . . 7 ⊢ ω ∈ On | |
| 2 | nnenom 14003 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 9023 | . . . . . . 7 ⊢ ω ≈ ℕ |
| 4 | isnumi 9965 | . . . . . . 7 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . . 6 ⊢ ℕ ∈ dom card |
| 6 | znnen 16235 | . . . . . . 7 ⊢ ℤ ≈ ℕ | |
| 7 | ennum 9966 | . . . . . . 7 ⊢ (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (ℤ ∈ dom card ↔ ℕ ∈ dom card) |
| 9 | 5, 8 | mpbir 231 | . . . . 5 ⊢ ℤ ∈ dom card |
| 10 | xpnum 9970 | . . . . 5 ⊢ ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ∈ dom card |
| 12 | eqid 2736 | . . . . . 6 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) | |
| 13 | ovex 7443 | . . . . . 6 ⊢ (𝑥 / 𝑦) ∈ V | |
| 14 | 12, 13 | fnmpoi 8074 | . . . . 5 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) |
| 15 | 12 | rnmpo 7545 | . . . . . 6 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 16 | elq 12971 | . . . . . . 7 ⊢ (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)) | |
| 17 | 16 | eqabi 2871 | . . . . . 6 ⊢ ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 18 | 15, 17 | eqtr4i 2762 | . . . . 5 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ |
| 19 | df-fo 6542 | . . . . 5 ⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ)) | |
| 20 | 14, 18, 19 | mpbir2an 711 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ |
| 21 | fodomnum 10076 | . . . 4 ⊢ ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ))) | |
| 22 | 11, 20, 21 | mp2 9 | . . 3 ⊢ ℚ ≼ (ℤ × ℕ) |
| 23 | nnex 12251 | . . . . . 6 ⊢ ℕ ∈ V | |
| 24 | 23 | enref 9004 | . . . . 5 ⊢ ℕ ≈ ℕ |
| 25 | xpen 9159 | . . . . 5 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ)) | |
| 26 | 6, 24, 25 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ≈ (ℕ × ℕ) |
| 27 | xpnnen 16234 | . . . 4 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 28 | 26, 27 | entri 9027 | . . 3 ⊢ (ℤ × ℕ) ≈ ℕ |
| 29 | domentr 9032 | . . 3 ⊢ ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ) | |
| 30 | 22, 28, 29 | mp2an 692 | . 2 ⊢ ℚ ≼ ℕ |
| 31 | qex 12982 | . . 3 ⊢ ℚ ∈ V | |
| 32 | nnssq 12979 | . . 3 ⊢ ℕ ⊆ ℚ | |
| 33 | ssdomg 9019 | . . 3 ⊢ (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ)) | |
| 34 | 31, 32, 33 | mp2 9 | . 2 ⊢ ℕ ≼ ℚ |
| 35 | sbth 9112 | . 2 ⊢ ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ) | |
| 36 | 30, 34, 35 | mp2an 692 | 1 ⊢ ℚ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 × cxp 5657 dom cdm 5659 ran crn 5660 Oncon0 6357 Fn wfn 6531 –onto→wfo 6534 (class class class)co 7410 ∈ cmpo 7412 ωcom 7866 ≈ cen 8961 ≼ cdom 8962 cardccrd 9954 / cdiv 11899 ℕcn 12245 ℤcz 12593 ℚcq 12969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 |
| This theorem is referenced by: rpnnen 16250 resdomq 16267 re2ndc 24745 ovolq 25449 opnmblALT 25561 vitali 25571 mbfimaopnlem 25613 mbfaddlem 25618 mblfinlem1 37686 irrapx1 42818 qenom 45355 |
| Copyright terms: Public domain | W3C validator |