| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qnnen | Structured version Visualization version GIF version | ||
| Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
| Ref | Expression |
|---|---|
| qnnen | ⊢ ℚ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9599 | . . . . . . 7 ⊢ ω ∈ On | |
| 2 | nnenom 13945 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8975 | . . . . . . 7 ⊢ ω ≈ ℕ |
| 4 | isnumi 9899 | . . . . . . 7 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . . 6 ⊢ ℕ ∈ dom card |
| 6 | znnen 16180 | . . . . . . 7 ⊢ ℤ ≈ ℕ | |
| 7 | ennum 9900 | . . . . . . 7 ⊢ (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (ℤ ∈ dom card ↔ ℕ ∈ dom card) |
| 9 | 5, 8 | mpbir 231 | . . . . 5 ⊢ ℤ ∈ dom card |
| 10 | xpnum 9904 | . . . . 5 ⊢ ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ∈ dom card |
| 12 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) | |
| 13 | ovex 7420 | . . . . . 6 ⊢ (𝑥 / 𝑦) ∈ V | |
| 14 | 12, 13 | fnmpoi 8049 | . . . . 5 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) |
| 15 | 12 | rnmpo 7522 | . . . . . 6 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 16 | elq 12909 | . . . . . . 7 ⊢ (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)) | |
| 17 | 16 | eqabi 2863 | . . . . . 6 ⊢ ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 18 | 15, 17 | eqtr4i 2755 | . . . . 5 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ |
| 19 | df-fo 6517 | . . . . 5 ⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ)) | |
| 20 | 14, 18, 19 | mpbir2an 711 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ |
| 21 | fodomnum 10010 | . . . 4 ⊢ ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ))) | |
| 22 | 11, 20, 21 | mp2 9 | . . 3 ⊢ ℚ ≼ (ℤ × ℕ) |
| 23 | nnex 12192 | . . . . . 6 ⊢ ℕ ∈ V | |
| 24 | 23 | enref 8956 | . . . . 5 ⊢ ℕ ≈ ℕ |
| 25 | xpen 9104 | . . . . 5 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ)) | |
| 26 | 6, 24, 25 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ≈ (ℕ × ℕ) |
| 27 | xpnnen 16179 | . . . 4 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 28 | 26, 27 | entri 8979 | . . 3 ⊢ (ℤ × ℕ) ≈ ℕ |
| 29 | domentr 8984 | . . 3 ⊢ ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ) | |
| 30 | 22, 28, 29 | mp2an 692 | . 2 ⊢ ℚ ≼ ℕ |
| 31 | qex 12920 | . . 3 ⊢ ℚ ∈ V | |
| 32 | nnssq 12917 | . . 3 ⊢ ℕ ⊆ ℚ | |
| 33 | ssdomg 8971 | . . 3 ⊢ (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ)) | |
| 34 | 31, 32, 33 | mp2 9 | . 2 ⊢ ℕ ≼ ℚ |
| 35 | sbth 9061 | . 2 ⊢ ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ) | |
| 36 | 30, 34, 35 | mp2an 692 | 1 ⊢ ℚ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 dom cdm 5638 ran crn 5639 Oncon0 6332 Fn wfn 6506 –onto→wfo 6509 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 cardccrd 9888 / cdiv 11835 ℕcn 12186 ℤcz 12529 ℚcq 12907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 |
| This theorem is referenced by: rpnnen 16195 resdomq 16212 re2ndc 24689 ovolq 25392 opnmblALT 25504 vitali 25514 mbfimaopnlem 25556 mbfaddlem 25561 mblfinlem1 37651 irrapx1 42816 qenom 45357 |
| Copyright terms: Public domain | W3C validator |