| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qnnen | Structured version Visualization version GIF version | ||
| Description: The rational numbers are countable. This proof does not use the Axiom of Choice, even though it uses an onto function, because the base set (ℤ × ℕ) is numerable. Exercise 2 of [Enderton] p. 133. For purposes of the Metamath 100 list, we are considering Mario Carneiro's revision as the date this proof was completed. This is Metamath 100 proof #3. (Contributed by NM, 31-Jul-2004.) (Revised by Mario Carneiro, 3-Mar-2013.) |
| Ref | Expression |
|---|---|
| qnnen | ⊢ ℚ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9545 | . . . . . . 7 ⊢ ω ∈ On | |
| 2 | nnenom 13891 | . . . . . . . 8 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8935 | . . . . . . 7 ⊢ ω ≈ ℕ |
| 4 | isnumi 9848 | . . . . . . 7 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . . 6 ⊢ ℕ ∈ dom card |
| 6 | znnen 16125 | . . . . . . 7 ⊢ ℤ ≈ ℕ | |
| 7 | ennum 9849 | . . . . . . 7 ⊢ (ℤ ≈ ℕ → (ℤ ∈ dom card ↔ ℕ ∈ dom card)) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (ℤ ∈ dom card ↔ ℕ ∈ dom card) |
| 9 | 5, 8 | mpbir 231 | . . . . 5 ⊢ ℤ ∈ dom card |
| 10 | xpnum 9853 | . . . . 5 ⊢ ((ℤ ∈ dom card ∧ ℕ ∈ dom card) → (ℤ × ℕ) ∈ dom card) | |
| 11 | 9, 5, 10 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ∈ dom card |
| 12 | eqid 2733 | . . . . . 6 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) | |
| 13 | ovex 7387 | . . . . . 6 ⊢ (𝑥 / 𝑦) ∈ V | |
| 14 | 12, 13 | fnmpoi 8010 | . . . . 5 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) |
| 15 | 12 | rnmpo 7487 | . . . . . 6 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 16 | elq 12852 | . . . . . . 7 ⊢ (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)) | |
| 17 | 16 | eqabi 2868 | . . . . . 6 ⊢ ℚ = {𝑧 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦)} |
| 18 | 15, 17 | eqtr4i 2759 | . . . . 5 ⊢ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ |
| 19 | df-fo 6494 | . . . . 5 ⊢ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ ↔ ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) Fn (ℤ × ℕ) ∧ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)) = ℚ)) | |
| 20 | 14, 18, 19 | mpbir2an 711 | . . . 4 ⊢ (𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ |
| 21 | fodomnum 9957 | . . . 4 ⊢ ((ℤ × ℕ) ∈ dom card → ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ ↦ (𝑥 / 𝑦)):(ℤ × ℕ)–onto→ℚ → ℚ ≼ (ℤ × ℕ))) | |
| 22 | 11, 20, 21 | mp2 9 | . . 3 ⊢ ℚ ≼ (ℤ × ℕ) |
| 23 | nnex 12140 | . . . . . 6 ⊢ ℕ ∈ V | |
| 24 | 23 | enref 8916 | . . . . 5 ⊢ ℕ ≈ ℕ |
| 25 | xpen 9062 | . . . . 5 ⊢ ((ℤ ≈ ℕ ∧ ℕ ≈ ℕ) → (ℤ × ℕ) ≈ (ℕ × ℕ)) | |
| 26 | 6, 24, 25 | mp2an 692 | . . . 4 ⊢ (ℤ × ℕ) ≈ (ℕ × ℕ) |
| 27 | xpnnen 16124 | . . . 4 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 28 | 26, 27 | entri 8939 | . . 3 ⊢ (ℤ × ℕ) ≈ ℕ |
| 29 | domentr 8944 | . . 3 ⊢ ((ℚ ≼ (ℤ × ℕ) ∧ (ℤ × ℕ) ≈ ℕ) → ℚ ≼ ℕ) | |
| 30 | 22, 28, 29 | mp2an 692 | . 2 ⊢ ℚ ≼ ℕ |
| 31 | qex 12863 | . . 3 ⊢ ℚ ∈ V | |
| 32 | nnssq 12860 | . . 3 ⊢ ℕ ⊆ ℚ | |
| 33 | ssdomg 8931 | . . 3 ⊢ (ℚ ∈ V → (ℕ ⊆ ℚ → ℕ ≼ ℚ)) | |
| 34 | 31, 32, 33 | mp2 9 | . 2 ⊢ ℕ ≼ ℚ |
| 35 | sbth 9019 | . 2 ⊢ ((ℚ ≼ ℕ ∧ ℕ ≼ ℚ) → ℚ ≈ ℕ) | |
| 36 | 30, 34, 35 | mp2an 692 | 1 ⊢ ℚ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 × cxp 5619 dom cdm 5621 ran crn 5622 Oncon0 6313 Fn wfn 6483 –onto→wfo 6486 (class class class)co 7354 ∈ cmpo 7356 ωcom 7804 ≈ cen 8874 ≼ cdom 8875 cardccrd 9837 / cdiv 11783 ℕcn 12134 ℤcz 12477 ℚcq 12850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-omul 8398 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-oi 9405 df-card 9841 df-acn 9844 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 |
| This theorem is referenced by: rpnnen 16140 resdomq 16157 ex-chn2 18548 re2ndc 24719 ovolq 25422 opnmblALT 25534 vitali 25544 mbfimaopnlem 25586 mbfaddlem 25591 mblfinlem1 37720 irrapx1 42948 qenom 45487 |
| Copyright terms: Public domain | W3C validator |