Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnrm2 Structured version   Visualization version   GIF version

Theorem dfnrm2 46225
Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 22468. (Contributed by Zhi Wang, 30-Aug-2024.)
Assertion
Ref Expression
dfnrm2 Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
Distinct variable group:   𝑐,𝑑,𝑗,𝑥,𝑦

Proof of Theorem dfnrm2
StepHypRef Expression
1 isnrm3 22510 . . 3 (𝑗 ∈ Nrm ↔ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
21abbi2i 2879 . 2 Nrm = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))}
3 df-rab 3073 . 2 {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))} = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))}
42, 3eqtr4i 2769 1 Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  c0 4256  cfv 6433  Topctop 22042  Clsdccld 22167  Nrmcnrm 22461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-top 22043  df-cld 22170  df-cls 22172  df-nrm 22468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator