![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnrm2 | Structured version Visualization version GIF version |
Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 23239. (Contributed by Zhi Wang, 30-Aug-2024.) |
Ref | Expression |
---|---|
dfnrm2 | ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnrm3 23281 | . . 3 ⊢ (𝑗 ∈ Nrm ↔ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) | |
2 | 1 | eqabi 2864 | . 2 ⊢ Nrm = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))} |
3 | df-rab 3429 | . 2 ⊢ {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))} | |
4 | 2, 3 | eqtr4i 2758 | 1 ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2704 ∀wral 3057 ∃wrex 3066 {crab 3428 ∩ cin 3946 ⊆ wss 3947 ∅c0 4324 ‘cfv 6551 Topctop 22813 Clsdccld 22938 Nrmcnrm 23232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-top 22814 df-cld 22941 df-cls 22943 df-nrm 23239 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |