| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnrm2 | Structured version Visualization version GIF version | ||
| Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 23232. (Contributed by Zhi Wang, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| dfnrm2 | ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrm3 23274 | . . 3 ⊢ (𝑗 ∈ Nrm ↔ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))) | |
| 2 | 1 | eqabi 2866 | . 2 ⊢ Nrm = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))} |
| 3 | df-rab 3396 | . 2 ⊢ {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅)))} | |
| 4 | 2, 3 | eqtr4i 2757 | 1 ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐 ∩ 𝑑) = ∅ → ∃𝑥 ∈ 𝑗 ∃𝑦 ∈ 𝑗 (𝑐 ⊆ 𝑥 ∧ 𝑑 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑦) = ∅))} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 {crab 3395 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ‘cfv 6481 Topctop 22808 Clsdccld 22931 Nrmcnrm 23225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22809 df-cld 22934 df-cls 22936 df-nrm 23232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |