Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnrm2 Structured version   Visualization version   GIF version

Theorem dfnrm2 46113
Description: A topological space is normal if any disjoint closed sets can be separated by open neighborhoods. An alternate definition of df-nrm 22376. (Contributed by Zhi Wang, 30-Aug-2024.)
Assertion
Ref Expression
dfnrm2 Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
Distinct variable group:   𝑐,𝑑,𝑗,𝑥,𝑦

Proof of Theorem dfnrm2
StepHypRef Expression
1 isnrm3 22418 . . 3 (𝑗 ∈ Nrm ↔ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))))
21abbi2i 2878 . 2 Nrm = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))}
3 df-rab 3072 . 2 {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))} = {𝑗 ∣ (𝑗 ∈ Top ∧ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅)))}
42, 3eqtr4i 2769 1 Nrm = {𝑗 ∈ Top ∣ ∀𝑐 ∈ (Clsd‘𝑗)∀𝑑 ∈ (Clsd‘𝑗)((𝑐𝑑) = ∅ → ∃𝑥𝑗𝑦𝑗 (𝑐𝑥𝑑𝑦 ∧ (𝑥𝑦) = ∅))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  c0 4253  cfv 6418  Topctop 21950  Clsdccld 22075  Nrmcnrm 22369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-nrm 22376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator