| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abvge0 | Structured version Visualization version GIF version | ||
| Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
| Ref | Expression |
|---|---|
| abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
| abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| abvge0 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | . . . 4 ⊢ 𝐴 = (AbsVal‘𝑅) | |
| 2 | abvf.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | abvfge0 20779 | . . 3 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
| 4 | 3 | ffvelcdmda 7079 | . 2 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ (0[,)+∞)) |
| 5 | elrege0 13476 | . . 3 ⊢ ((𝐹‘𝑋) ∈ (0[,)+∞) ↔ ((𝐹‘𝑋) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑋))) | |
| 6 | 5 | simprbi 496 | . 2 ⊢ ((𝐹‘𝑋) ∈ (0[,)+∞) → 0 ≤ (𝐹‘𝑋)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → 0 ≤ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 +∞cpnf 11271 ≤ cle 11275 [,)cico 13369 Basecbs 17233 AbsValcabv 20773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-addrcl 11195 ax-rnegex 11205 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ico 13373 df-abv 20774 |
| This theorem is referenced by: abvgt0 20785 abvneg 20791 abvcxp 27583 ostth2lem2 27602 fiabv 42526 |
| Copyright terms: Public domain | W3C validator |