![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvge0 | Structured version Visualization version GIF version |
Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | β’ π΄ = (AbsValβπ ) |
abvf.b | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
abvge0 | β’ ((πΉ β π΄ β§ π β π΅) β 0 β€ (πΉβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . . 4 β’ π΄ = (AbsValβπ ) | |
2 | abvf.b | . . . 4 β’ π΅ = (Baseβπ ) | |
3 | 1, 2 | abvfge0 20422 | . . 3 β’ (πΉ β π΄ β πΉ:π΅βΆ(0[,)+β)) |
4 | 3 | ffvelcdmda 7083 | . 2 β’ ((πΉ β π΄ β§ π β π΅) β (πΉβπ) β (0[,)+β)) |
5 | elrege0 13427 | . . 3 β’ ((πΉβπ) β (0[,)+β) β ((πΉβπ) β β β§ 0 β€ (πΉβπ))) | |
6 | 5 | simprbi 497 | . 2 β’ ((πΉβπ) β (0[,)+β) β 0 β€ (πΉβπ)) |
7 | 4, 6 | syl 17 | 1 β’ ((πΉ β π΄ β§ π β π΅) β 0 β€ (πΉβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 βcr 11105 0cc0 11106 +βcpnf 11241 β€ cle 11245 [,)cico 13322 Basecbs 17140 AbsValcabv 20416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-addrcl 11167 ax-rnegex 11177 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-ico 13326 df-abv 20417 |
This theorem is referenced by: abvgt0 20428 abvneg 20434 abvcxp 27107 ostth2lem2 27126 |
Copyright terms: Public domain | W3C validator |