MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvge0 Structured version   Visualization version   GIF version

Theorem abvge0 20732
Description: The absolute value of a number is greater than or equal to zero. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
abvge0 ((𝐹𝐴𝑋𝐵) → 0 ≤ (𝐹𝑋))

Proof of Theorem abvge0
StepHypRef Expression
1 abvf.a . . . 4 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . . 4 𝐵 = (Base‘𝑅)
31, 2abvfge0 20729 . . 3 (𝐹𝐴𝐹:𝐵⟶(0[,)+∞))
43ffvelcdmda 7017 . 2 ((𝐹𝐴𝑋𝐵) → (𝐹𝑋) ∈ (0[,)+∞))
5 elrege0 13354 . . 3 ((𝐹𝑋) ∈ (0[,)+∞) ↔ ((𝐹𝑋) ∈ ℝ ∧ 0 ≤ (𝐹𝑋)))
65simprbi 496 . 2 ((𝐹𝑋) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑋))
74, 6syl 17 1 ((𝐹𝐴𝑋𝐵) → 0 ≤ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  +∞cpnf 11143  cle 11147  [,)cico 13247  Basecbs 17120  AbsValcabv 20723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-addrcl 11067  ax-rnegex 11077  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-abv 20724
This theorem is referenced by:  abvgt0  20735  abvneg  20741  abvcxp  27553  ostth2lem2  27572  fiabv  42577
  Copyright terms: Public domain W3C validator