![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abvf | Structured version Visualization version GIF version |
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
abvf | ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | abvf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | abvfge0 20789 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
4 | rge0ssre 13481 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
5 | fss 6736 | . 2 ⊢ ((𝐹:𝐵⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:𝐵⟶ℝ) | |
6 | 3, 4, 5 | sylancl 584 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 ℝcr 11148 0cc0 11149 +∞cpnf 11286 [,)cico 13374 Basecbs 17208 AbsValcabv 20783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-addrcl 11210 ax-rnegex 11220 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-po 5586 df-so 5587 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-ico 13378 df-abv 20784 |
This theorem is referenced by: abvcl 20791 abvres 20806 abvmet 24572 tngnrg 24679 ostthlem1 27653 fiabv 42226 |
Copyright terms: Public domain | W3C validator |