MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abvf Structured version   Visualization version   GIF version

Theorem abvf 19998
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.)
Hypotheses
Ref Expression
abvf.a 𝐴 = (AbsVal‘𝑅)
abvf.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
abvf (𝐹𝐴𝐹:𝐵⟶ℝ)

Proof of Theorem abvf
StepHypRef Expression
1 abvf.a . . 3 𝐴 = (AbsVal‘𝑅)
2 abvf.b . . 3 𝐵 = (Base‘𝑅)
31, 2abvfge0 19997 . 2 (𝐹𝐴𝐹:𝐵⟶(0[,)+∞))
4 rge0ssre 13117 . 2 (0[,)+∞) ⊆ ℝ
5 fss 6601 . 2 ((𝐹:𝐵⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:𝐵⟶ℝ)
63, 4, 5sylancl 585 1 (𝐹𝐴𝐹:𝐵⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  +∞cpnf 10937  [,)cico 13010  Basecbs 16840  AbsValcabv 19991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014  df-abv 19992
This theorem is referenced by:  abvcl  19999  abvres  20014  abvmet  23637  tngnrg  23744  ostthlem1  26680
  Copyright terms: Public domain W3C validator