Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abvf | Structured version Visualization version GIF version |
Description: An absolute value is a function from the ring to the real numbers. (Contributed by Mario Carneiro, 8-Sep-2014.) |
Ref | Expression |
---|---|
abvf.a | ⊢ 𝐴 = (AbsVal‘𝑅) |
abvf.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
abvf | ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvf.a | . . 3 ⊢ 𝐴 = (AbsVal‘𝑅) | |
2 | abvf.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | abvfge0 19997 | . 2 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶(0[,)+∞)) |
4 | rge0ssre 13117 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
5 | fss 6601 | . 2 ⊢ ((𝐹:𝐵⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:𝐵⟶ℝ) | |
6 | 3, 4, 5 | sylancl 585 | 1 ⊢ (𝐹 ∈ 𝐴 → 𝐹:𝐵⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 [,)cico 13010 Basecbs 16840 AbsValcabv 19991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-abv 19992 |
This theorem is referenced by: abvcl 19999 abvres 20014 abvmet 23637 tngnrg 23744 ostthlem1 26680 |
Copyright terms: Public domain | W3C validator |