MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac7g Structured version   Visualization version   GIF version

Theorem ac7g 10488
Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
ac7g (𝑅𝐴 → ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅))
Distinct variable group:   𝑅,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem ac7g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3985 . . . 4 (𝑥 = 𝑅 → (𝑓𝑥𝑓𝑅))
2 dmeq 5883 . . . . 5 (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅)
32fneq2d 6632 . . . 4 (𝑥 = 𝑅 → (𝑓 Fn dom 𝑥𝑓 Fn dom 𝑅))
41, 3anbi12d 632 . . 3 (𝑥 = 𝑅 → ((𝑓𝑥𝑓 Fn dom 𝑥) ↔ (𝑓𝑅𝑓 Fn dom 𝑅)))
54exbidv 1921 . 2 (𝑥 = 𝑅 → (∃𝑓(𝑓𝑥𝑓 Fn dom 𝑥) ↔ ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅)))
6 ac7 10487 . 2 𝑓(𝑓𝑥𝑓 Fn dom 𝑥)
75, 6vtoclg 3533 1 (𝑅𝐴 → ∃𝑓(𝑓𝑅𝑓 Fn dom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wss 3926  dom cdm 5654   Fn wfn 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ac 10130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator