| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac7g | Structured version Visualization version GIF version | ||
| Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| ac7g | ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3976 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑅)) | |
| 2 | dmeq 5870 | . . . . 5 ⊢ (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅) | |
| 3 | 2 | fneq2d 6615 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑅)) |
| 4 | 1, 3 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ (𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
| 5 | 4 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
| 6 | ac7 10433 | . 2 ⊢ ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) | |
| 7 | 5, 6 | vtoclg 3523 | 1 ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 dom cdm 5641 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ac 10076 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |