![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac7g | Structured version Visualization version GIF version |
Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
ac7g | ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4008 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑅)) | |
2 | dmeq 5903 | . . . . 5 ⊢ (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅) | |
3 | 2 | fneq2d 6643 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑅)) |
4 | 1, 3 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ (𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
5 | 4 | exbidv 1923 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
6 | ac7 10474 | . 2 ⊢ ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) | |
7 | 5, 6 | vtoclg 3542 | 1 ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3948 dom cdm 5676 Fn wfn 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-ac2 10464 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ac 10117 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |