![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac7g | Structured version Visualization version GIF version |
Description: An Axiom of Choice equivalent similar to the Axiom of Choice (first form) of [Enderton] p. 49. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
ac7g | ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 4035 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 ⊆ 𝑥 ↔ 𝑓 ⊆ 𝑅)) | |
2 | dmeq 5928 | . . . . 5 ⊢ (𝑥 = 𝑅 → dom 𝑥 = dom 𝑅) | |
3 | 2 | fneq2d 6673 | . . . 4 ⊢ (𝑥 = 𝑅 → (𝑓 Fn dom 𝑥 ↔ 𝑓 Fn dom 𝑅)) |
4 | 1, 3 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑅 → ((𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ (𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
5 | 4 | exbidv 1920 | . 2 ⊢ (𝑥 = 𝑅 → (∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) ↔ ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅))) |
6 | ac7 10542 | . 2 ⊢ ∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥) | |
7 | 5, 6 | vtoclg 3566 | 1 ⊢ (𝑅 ∈ 𝐴 → ∃𝑓(𝑓 ⊆ 𝑅 ∧ 𝑓 Fn dom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 dom cdm 5700 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ac 10185 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |