MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4c Structured version   Visualization version   GIF version

Theorem ac4c 10413
Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
ac4c.1 𝐴 ∈ V
Assertion
Ref Expression
ac4c 𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac4c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ac4c.1 . 2 𝐴 ∈ V
2 raleq 3310 . . 3 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
32exbidv 1925 . 2 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
4 ac4 10412 . 2 𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
51, 3, 4vtocl 3519 1 𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wex 1782  wcel 2107  wne 2944  wral 3065  Vcvv 3446  c0 4283  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-ac2 10400
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ac 10053
This theorem is referenced by:  axdclem2  10457
  Copyright terms: Public domain W3C validator