MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac4c Structured version   Visualization version   GIF version

Theorem ac4c 10163
Description: Equivalent of Axiom of Choice (class version). (Contributed by NM, 10-Feb-1997.)
Hypothesis
Ref Expression
ac4c.1 𝐴 ∈ V
Assertion
Ref Expression
ac4c 𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac4c
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ac4c.1 . 2 𝐴 ∈ V
2 raleq 3333 . . 3 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∀𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
32exbidv 1925 . 2 (𝑦 = 𝐴 → (∃𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥) ↔ ∃𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)))
4 ac4 10162 . 2 𝑓𝑥𝑦 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
51, 3, 4vtocl 3488 1 𝑓𝑥𝐴 (𝑥 ≠ ∅ → (𝑓𝑥) ∈ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  Vcvv 3422  c0 4253  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ac 9803
This theorem is referenced by:  axdclem2  10207
  Copyright terms: Public domain W3C validator