MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsfiel2 Structured version   Visualization version   GIF version

Theorem acsfiel2 17622
Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Hypothesis
Ref Expression
isacs2.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsfiel2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
Distinct variable groups:   𝑦,𝐶   𝑦,𝐹   𝑦,𝑆   𝑦,𝑋

Proof of Theorem acsfiel2
StepHypRef Expression
1 isacs2.f . . 3 𝐹 = (mrCls‘𝐶)
21acsfiel 17621 . 2 (𝐶 ∈ (ACS‘𝑋) → (𝑆𝐶 ↔ (𝑆𝑋 ∧ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆)))
32baibd 539 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝑆𝐶 ↔ ∀𝑦 ∈ (𝒫 𝑆 ∩ Fin)(𝐹𝑦) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3915  wss 3916  𝒫 cpw 4565  cfv 6513  Fincfn 8920  mrClscmrc 17550  ACScacs 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-mre 17553  df-mrc 17554  df-acs 17556
This theorem is referenced by:  mreacs  17625
  Copyright terms: Public domain W3C validator