| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version | ||
| Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17576. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| Ref | Expression |
|---|---|
| acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmre 17576 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 Moorecmre 17502 ACScacs 17505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-acs 17509 |
| This theorem is referenced by: mreacs 17582 acsficl2d 18476 acsfiindd 18477 acsmapd 18478 acsmap2d 18479 acsinfdimd 18482 acsexdimd 18483 mndind 18720 gsumwspan 18738 cycsubg2 19107 cycsubg2cl 19108 cntzspan 19741 dprdz 19929 pgpfac1lem2 19974 pgpfac1lem3a 19975 pgpfaclem1 19980 lidlincl 33377 lvecdimfi 33567 isnacs3 42683 |
| Copyright terms: Public domain | W3C validator |