MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmred Structured version   Visualization version   GIF version

Theorem acsmred 17701
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17697. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
acsmred.1 (𝜑𝐴 ∈ (ACS‘𝑋))
Assertion
Ref Expression
acsmred (𝜑𝐴 ∈ (Moore‘𝑋))

Proof of Theorem acsmred
StepHypRef Expression
1 acsmred.1 . 2 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmre 17697 . 2 (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋))
31, 2syl 17 1 (𝜑𝐴 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6563  Moorecmre 17627  ACScacs 17630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-acs 17634
This theorem is referenced by:  mreacs  17703  acsficl2d  18610  acsfiindd  18611  acsmapd  18612  acsmap2d  18613  acsinfdimd  18616  acsexdimd  18617  mndind  18854  gsumwspan  18872  cycsubg2  19241  cycsubg2cl  19242  cntzspan  19877  dprdz  20065  pgpfac1lem2  20110  pgpfac1lem3a  20111  pgpfaclem1  20116  lidlincl  33438  lvecdimfi  33625  isnacs3  42698
  Copyright terms: Public domain W3C validator