| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version | ||
| Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17664. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| Ref | Expression |
|---|---|
| acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmre 17664 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6531 Moorecmre 17594 ACScacs 17597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-acs 17601 |
| This theorem is referenced by: mreacs 17670 acsficl2d 18562 acsfiindd 18563 acsmapd 18564 acsmap2d 18565 acsinfdimd 18568 acsexdimd 18569 mndind 18806 gsumwspan 18824 cycsubg2 19193 cycsubg2cl 19194 cntzspan 19825 dprdz 20013 pgpfac1lem2 20058 pgpfac1lem3a 20059 pgpfaclem1 20064 lidlincl 33445 lvecdimfi 33635 isnacs3 42733 |
| Copyright terms: Public domain | W3C validator |