![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version |
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 16627. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
Ref | Expression |
---|---|
acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmre 16627 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ‘cfv 6101 Moorecmre 16557 ACScacs 16560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-acs 16564 |
This theorem is referenced by: mreacs 16633 acsficl2d 17491 acsfiindd 17492 acsmapd 17493 acsmap2d 17494 acsinfdimd 17497 acsexdimd 17498 mrcmndind 17681 gsumwspan 17699 cycsubg2 17944 cycsubg2cl 17945 cntzspan 18562 dprdz 18745 pgpfac1lem2 18790 pgpfac1lem3a 18791 isnacs3 38059 |
Copyright terms: Public domain | W3C validator |