MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmred Structured version   Visualization version   GIF version

Theorem acsmred 17559
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17555. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
acsmred.1 (𝜑𝐴 ∈ (ACS‘𝑋))
Assertion
Ref Expression
acsmred (𝜑𝐴 ∈ (Moore‘𝑋))

Proof of Theorem acsmred
StepHypRef Expression
1 acsmred.1 . 2 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmre 17555 . 2 (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋))
31, 2syl 17 1 (𝜑𝐴 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  Moorecmre 17481  ACScacs 17484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-acs 17488
This theorem is referenced by:  mreacs  17561  acsficl2d  18455  acsfiindd  18456  acsmapd  18457  acsmap2d  18458  acsinfdimd  18461  acsexdimd  18462  mndind  18733  gsumwspan  18751  cycsubg2  19120  cycsubg2cl  19121  cntzspan  19754  dprdz  19942  pgpfac1lem2  19987  pgpfac1lem3a  19988  pgpfaclem1  19993  lidlincl  33390  lvecdimfi  33603  isnacs3  42742
  Copyright terms: Public domain W3C validator