MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmred Structured version   Visualization version   GIF version

Theorem acsmred 17580
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17576. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
acsmred.1 (𝜑𝐴 ∈ (ACS‘𝑋))
Assertion
Ref Expression
acsmred (𝜑𝐴 ∈ (Moore‘𝑋))

Proof of Theorem acsmred
StepHypRef Expression
1 acsmred.1 . 2 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmre 17576 . 2 (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋))
31, 2syl 17 1 (𝜑𝐴 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6486  Moorecmre 17502  ACScacs 17505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-acs 17509
This theorem is referenced by:  mreacs  17582  acsficl2d  18476  acsfiindd  18477  acsmapd  18478  acsmap2d  18479  acsinfdimd  18482  acsexdimd  18483  mndind  18720  gsumwspan  18738  cycsubg2  19107  cycsubg2cl  19108  cntzspan  19741  dprdz  19929  pgpfac1lem2  19974  pgpfac1lem3a  19975  pgpfaclem1  19980  lidlincl  33377  lvecdimfi  33567  isnacs3  42683
  Copyright terms: Public domain W3C validator