MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmred Structured version   Visualization version   GIF version

Theorem acsmred 17365
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17361. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
acsmred.1 (𝜑𝐴 ∈ (ACS‘𝑋))
Assertion
Ref Expression
acsmred (𝜑𝐴 ∈ (Moore‘𝑋))

Proof of Theorem acsmred
StepHypRef Expression
1 acsmred.1 . 2 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmre 17361 . 2 (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋))
31, 2syl 17 1 (𝜑𝐴 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  Moorecmre 17291  ACScacs 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-acs 17298
This theorem is referenced by:  mreacs  17367  acsficl2d  18270  acsfiindd  18271  acsmapd  18272  acsmap2d  18273  acsinfdimd  18276  acsexdimd  18277  mndind  18466  gsumwspan  18485  cycsubg2  18829  cycsubg2cl  18830  cntzspan  19445  dprdz  19633  pgpfac1lem2  19678  pgpfac1lem3a  19679  pgpfaclem1  19684  lidlincl  31607  lvecdimfi  31683  isnacs3  40532
  Copyright terms: Public domain W3C validator