Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version |
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17278. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
Ref | Expression |
---|---|
acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmre 17278 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 Moorecmre 17208 ACScacs 17211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-acs 17215 |
This theorem is referenced by: mreacs 17284 acsficl2d 18185 acsfiindd 18186 acsmapd 18187 acsmap2d 18188 acsinfdimd 18191 acsexdimd 18192 mndind 18381 gsumwspan 18400 cycsubg2 18744 cycsubg2cl 18745 cntzspan 19360 dprdz 19548 pgpfac1lem2 19593 pgpfac1lem3a 19594 pgpfaclem1 19599 lidlincl 31509 lvecdimfi 31585 isnacs3 40448 |
Copyright terms: Public domain | W3C validator |