| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version | ||
| Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17620. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| Ref | Expression |
|---|---|
| acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmre 17620 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6514 Moorecmre 17550 ACScacs 17553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-acs 17557 |
| This theorem is referenced by: mreacs 17626 acsficl2d 18518 acsfiindd 18519 acsmapd 18520 acsmap2d 18521 acsinfdimd 18524 acsexdimd 18525 mndind 18762 gsumwspan 18780 cycsubg2 19149 cycsubg2cl 19150 cntzspan 19781 dprdz 19969 pgpfac1lem2 20014 pgpfac1lem3a 20015 pgpfaclem1 20020 lidlincl 33408 lvecdimfi 33598 isnacs3 42705 |
| Copyright terms: Public domain | W3C validator |