Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version |
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17361. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
Ref | Expression |
---|---|
acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmre 17361 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6433 Moorecmre 17291 ACScacs 17294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-acs 17298 |
This theorem is referenced by: mreacs 17367 acsficl2d 18270 acsfiindd 18271 acsmapd 18272 acsmap2d 18273 acsinfdimd 18276 acsexdimd 18277 mndind 18466 gsumwspan 18485 cycsubg2 18829 cycsubg2cl 18830 cntzspan 19445 dprdz 19633 pgpfac1lem2 19678 pgpfac1lem3a 19679 pgpfaclem1 19684 lidlincl 31607 lvecdimfi 31683 isnacs3 40532 |
Copyright terms: Public domain | W3C validator |