| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version | ||
| Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17613. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| Ref | Expression |
|---|---|
| acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmre 17613 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 Moorecmre 17543 ACScacs 17546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-acs 17550 |
| This theorem is referenced by: mreacs 17619 acsficl2d 18511 acsfiindd 18512 acsmapd 18513 acsmap2d 18514 acsinfdimd 18517 acsexdimd 18518 mndind 18755 gsumwspan 18773 cycsubg2 19142 cycsubg2cl 19143 cntzspan 19774 dprdz 19962 pgpfac1lem2 20007 pgpfac1lem3a 20008 pgpfaclem1 20013 lidlincl 33401 lvecdimfi 33591 isnacs3 42698 |
| Copyright terms: Public domain | W3C validator |