| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmred | Structured version Visualization version GIF version | ||
| Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17555. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmred.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| Ref | Expression |
|---|---|
| acsmred | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmre 17555 | . 2 ⊢ (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 Moorecmre 17481 ACScacs 17484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-acs 17488 |
| This theorem is referenced by: mreacs 17561 acsficl2d 18455 acsfiindd 18456 acsmapd 18457 acsmap2d 18458 acsinfdimd 18461 acsexdimd 18462 mndind 18733 gsumwspan 18751 cycsubg2 19120 cycsubg2cl 19121 cntzspan 19754 dprdz 19942 pgpfac1lem2 19987 pgpfac1lem3a 19988 pgpfaclem1 19993 lidlincl 33390 lvecdimfi 33603 isnacs3 42742 |
| Copyright terms: Public domain | W3C validator |