MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmred Structured version   Visualization version   GIF version

Theorem acsmred 17442
Description: An algebraic closure system is also a Moore system. Deduction form of acsmre 17438. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
acsmred.1 (𝜑𝐴 ∈ (ACS‘𝑋))
Assertion
Ref Expression
acsmred (𝜑𝐴 ∈ (Moore‘𝑋))

Proof of Theorem acsmred
StepHypRef Expression
1 acsmred.1 . 2 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmre 17438 . 2 (𝐴 ∈ (ACS‘𝑋) → 𝐴 ∈ (Moore‘𝑋))
31, 2syl 17 1 (𝜑𝐴 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  cfv 6466  Moorecmre 17368  ACScacs 17371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-fv 6474  df-acs 17375
This theorem is referenced by:  mreacs  17444  acsficl2d  18347  acsfiindd  18348  acsmapd  18349  acsmap2d  18350  acsinfdimd  18353  acsexdimd  18354  mndind  18543  gsumwspan  18561  cycsubg2  18905  cycsubg2cl  18906  cntzspan  19520  dprdz  19708  pgpfac1lem2  19753  pgpfac1lem3a  19754  pgpfaclem1  19759  lidlincl  31746  lvecdimfi  31823  isnacs3  40748
  Copyright terms: Public domain W3C validator