Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0b Structured version   Visualization version   GIF version

Theorem itsclc0b 46097
Description: The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclc0.l 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
Assertion
Ref Expression
itsclc0b (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   𝑋,𝑝   0 ,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑄(𝑝)   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem itsclc0b
StepHypRef Expression
1 rprege0 12756 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
2 elrege0 13197 . . . . . . 7 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
31, 2sylibr 233 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
43adantr 481 . . . . 5 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ (0[,)+∞))
543ad2ant3 1134 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑅 ∈ (0[,)+∞))
6 itsclc0.i . . . . . 6 𝐼 = {1, 2}
7 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
8 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
9 itsclc0.s . . . . . 6 𝑆 = (Sphere‘𝐸)
10 itsclc0.0 . . . . . 6 0 = (𝐼 × {0})
11 eqid 2740 . . . . . 6 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
126, 7, 8, 9, 10, 112sphere0 46075 . . . . 5 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
1312eleq2d 2826 . . . 4 (𝑅 ∈ (0[,)+∞) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
145, 13syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
15 fveq1 6770 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘1) = (𝑋‘1))
1615oveq2d 7288 . . . . . . 7 (𝑝 = 𝑋 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝑋‘1)))
17 fveq1 6770 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘2) = (𝑋‘2))
1817oveq2d 7288 . . . . . . 7 (𝑝 = 𝑋 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝑋‘2)))
1916, 18oveq12d 7290 . . . . . 6 (𝑝 = 𝑋 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))))
2019eqeq1d 2742 . . . . 5 (𝑝 = 𝑋 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
21 itsclc0.l . . . . 5 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
2220, 21elrab2 3629 . . . 4 (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
2322a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
2414, 23anbi12d 631 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))))
2515oveq1d 7287 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘1)↑2) = ((𝑋‘1)↑2))
2617oveq1d 7287 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘2)↑2) = ((𝑋‘2)↑2))
2725, 26oveq12d 7290 . . . . . 6 (𝑝 = 𝑋 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
2827eqeq1d 2742 . . . . 5 (𝑝 = 𝑋 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
2928elrab 3626 . . . 4 (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
3029anbi1i 624 . . 3 ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
31 anandi 673 . . . 4 ((𝑋𝑃 ∧ ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
32 simpl1 1190 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
33 simpl2 1191 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
34 simpl3l 1227 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → 𝑅 ∈ ℝ+)
35 simpl3r 1228 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → 0 ≤ 𝐷)
366, 8rrx2pxel 46036 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
376, 8rrx2pyel 46037 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
3836, 37jca 512 . . . . . . . 8 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
3938adantl 482 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
4034, 35, 39jca31 515 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ)))
41 itsclc0.q . . . . . . 7 𝑄 = ((𝐴↑2) + (𝐵↑2))
42 itsclc0.d . . . . . . 7 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
4341, 42itsclc0xyqsolb 46095 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) ↔ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4432, 33, 40, 43syl21anc 835 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) ↔ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4544pm5.32da 579 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4631, 45bitr3id 285 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4730, 46syl5bb 283 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4824, 47bitrd 278 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  {crab 3070  {csn 4567  {cpr 4569   class class class wbr 5079   × cxp 5588  cfv 6432  (class class class)co 7272  m cmap 8607  cr 10881  0cc0 10882  1c1 10883   + caddc 10885   · cmul 10887  +∞cpnf 11017  cle 11021  cmin 11216   / cdiv 11643  2c2 12039  +crp 12741  [,)cico 13092  cexp 13793  csqrt 14955  ℝ^crrx 24558  Spherecsph 46053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-tpos 8034  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-sup 9189  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-clim 15208  df-sum 15409  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-0g 17163  df-gsum 17164  df-prds 17169  df-pws 17171  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-mhm 18441  df-grp 18591  df-minusg 18592  df-sbg 18593  df-subg 18763  df-ghm 18843  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-cring 19797  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-dvr 19936  df-rnghom 19970  df-drng 20004  df-field 20005  df-subrg 20033  df-staf 20116  df-srng 20117  df-lmod 20136  df-lss 20205  df-sra 20445  df-rgmod 20446  df-xmet 20601  df-met 20602  df-cnfld 20609  df-refld 20821  df-dsmm 20950  df-frlm 20965  df-nm 23749  df-tng 23751  df-tcph 24344  df-rrx 24560  df-ehl 24561  df-sph 46055
This theorem is referenced by:  itsclinecirc0b  46099
  Copyright terms: Public domain W3C validator