Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0b Structured version   Visualization version   GIF version

Theorem itsclc0b 46006
Description: The intersection points of a (nondegenerate) line through two points and a circle around the origin. (Contributed by AV, 2-May-2023.) (Revised by AV, 14-May-2023.)
Hypotheses
Ref Expression
itsclc0.i 𝐼 = {1, 2}
itsclc0.e 𝐸 = (ℝ^‘𝐼)
itsclc0.p 𝑃 = (ℝ ↑m 𝐼)
itsclc0.s 𝑆 = (Sphere‘𝐸)
itsclc0.0 0 = (𝐼 × {0})
itsclc0.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itsclc0.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
itsclc0.l 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
Assertion
Ref Expression
itsclc0b (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑅,𝑝   𝑋,𝑝   0 ,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝑄(𝑝)   𝑆(𝑝)   𝐿(𝑝)

Proof of Theorem itsclc0b
StepHypRef Expression
1 rprege0 12674 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
2 elrege0 13115 . . . . . . 7 (𝑅 ∈ (0[,)+∞) ↔ (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
31, 2sylibr 233 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ (0[,)+∞))
43adantr 480 . . . . 5 ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) → 𝑅 ∈ (0[,)+∞))
543ad2ant3 1133 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → 𝑅 ∈ (0[,)+∞))
6 itsclc0.i . . . . . 6 𝐼 = {1, 2}
7 itsclc0.e . . . . . 6 𝐸 = (ℝ^‘𝐼)
8 itsclc0.p . . . . . 6 𝑃 = (ℝ ↑m 𝐼)
9 itsclc0.s . . . . . 6 𝑆 = (Sphere‘𝐸)
10 itsclc0.0 . . . . . 6 0 = (𝐼 × {0})
11 eqid 2738 . . . . . 6 {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}
126, 7, 8, 9, 10, 112sphere0 45984 . . . . 5 (𝑅 ∈ (0[,)+∞) → ( 0 𝑆𝑅) = {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)})
1312eleq2d 2824 . . . 4 (𝑅 ∈ (0[,)+∞) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
145, 13syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋 ∈ ( 0 𝑆𝑅) ↔ 𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)}))
15 fveq1 6755 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘1) = (𝑋‘1))
1615oveq2d 7271 . . . . . . 7 (𝑝 = 𝑋 → (𝐴 · (𝑝‘1)) = (𝐴 · (𝑋‘1)))
17 fveq1 6755 . . . . . . . 8 (𝑝 = 𝑋 → (𝑝‘2) = (𝑋‘2))
1817oveq2d 7271 . . . . . . 7 (𝑝 = 𝑋 → (𝐵 · (𝑝‘2)) = (𝐵 · (𝑋‘2)))
1916, 18oveq12d 7273 . . . . . 6 (𝑝 = 𝑋 → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))))
2019eqeq1d 2740 . . . . 5 (𝑝 = 𝑋 → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
21 itsclc0.l . . . . 5 𝐿 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
2220, 21elrab2 3620 . . . 4 (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))
2322a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (𝑋𝐿 ↔ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
2414, 23anbi12d 630 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶))))
2515oveq1d 7270 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘1)↑2) = ((𝑋‘1)↑2))
2617oveq1d 7270 . . . . . . 7 (𝑝 = 𝑋 → ((𝑝‘2)↑2) = ((𝑋‘2)↑2))
2725, 26oveq12d 7273 . . . . . 6 (𝑝 = 𝑋 → (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (((𝑋‘1)↑2) + ((𝑋‘2)↑2)))
2827eqeq1d 2740 . . . . 5 (𝑝 = 𝑋 → ((((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2) ↔ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
2928elrab 3617 . . . 4 (𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ↔ (𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)))
3029anbi1i 623 . . 3 ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
31 anandi 672 . . . 4 ((𝑋𝑃 ∧ ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ ((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)))
32 simpl1 1189 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ))
33 simpl2 1190 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
34 simpl3l 1226 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → 𝑅 ∈ ℝ+)
35 simpl3r 1227 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → 0 ≤ 𝐷)
366, 8rrx2pxel 45945 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
376, 8rrx2pyel 45946 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
3836, 37jca 511 . . . . . . . 8 (𝑋𝑃 → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
3938adantl 481 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))
4034, 35, 39jca31 514 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ)))
41 itsclc0.q . . . . . . 7 𝑄 = ((𝐴↑2) + (𝐵↑2))
42 itsclc0.d . . . . . . 7 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
4341, 42itsclc0xyqsolb 46004 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ ((𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷) ∧ ((𝑋‘1) ∈ ℝ ∧ (𝑋‘2) ∈ ℝ))) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) ↔ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4432, 33, 40, 43syl21anc 834 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) ∧ 𝑋𝑃) → (((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶) ↔ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))))
4544pm5.32da 578 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋𝑃 ∧ ((((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2) ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4631, 45bitr3id 284 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → (((𝑋𝑃 ∧ (((𝑋‘1)↑2) + ((𝑋‘2)↑2)) = (𝑅↑2)) ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4730, 46syl5bb 282 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ {𝑝𝑃 ∣ (((𝑝‘1)↑2) + ((𝑝‘2)↑2)) = (𝑅↑2)} ∧ (𝑋𝑃 ∧ ((𝐴 · (𝑋‘1)) + (𝐵 · (𝑋‘2))) = 𝐶)) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
4824, 47bitrd 278 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤ 𝐷)) → ((𝑋 ∈ ( 0 𝑆𝑅) ∧ 𝑋𝐿) ↔ (𝑋𝑃 ∧ (((𝑋‘1) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ ((𝑋‘1) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ (𝑋‘2) = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  {csn 4558  {cpr 4560   class class class wbr 5070   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  +crp 12659  [,)cico 13010  cexp 13710  csqrt 14872  ℝ^crrx 24452  Spherecsph 45962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-xmet 20503  df-met 20504  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-nm 23644  df-tng 23646  df-tcph 24238  df-rrx 24454  df-ehl 24455  df-sph 45964
This theorem is referenced by:  itsclinecirc0b  46008
  Copyright terms: Public domain W3C validator