Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz1eqin Structured version   Visualization version   GIF version

Theorem fz1eqin 42757
Description: Express a one-based finite range as the intersection of lower integers with . (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fz1eqin (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))

Proof of Theorem fz1eqin
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1z 12645 . . . . 5 1 ∈ ℤ
2 nn0z 12636 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13549 . . . . 5 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
41, 2, 3sylancr 587 . . . 4 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
5 3anass 1094 . . . . 5 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)))
6 ancom 460 . . . . . 6 ((1 ≤ 𝑎𝑎𝑁) ↔ (𝑎𝑁 ∧ 1 ≤ 𝑎))
76anbi2i 623 . . . . 5 ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)))
8 anandi 676 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
95, 7, 83bitri 297 . . . 4 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
104, 9bitrdi 287 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
11 elin 3979 . . . 4 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ))
12 ellz1 42755 . . . . . 6 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
132, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
14 elnnz1 12641 . . . . . 6 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
1514a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
1613, 15anbi12d 632 . . . 4 (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1711, 16bitrid 283 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1810, 17bitr4d 282 . 2 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
1918eqrdv 2733 1 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  cdif 3960  cin 3962   class class class wbr 5148  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  cle 11294  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  diophin  42760
  Copyright terms: Public domain W3C validator