Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz1eqin | Structured version Visualization version GIF version |
Description: Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
fz1eqin | ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12207 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | nn0z 12200 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | elfz1 13100 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
4 | 1, 2, 3 | sylancr 590 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) |
5 | 3anass 1097 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
6 | ancom 464 | . . . . . 6 ⊢ ((1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) | |
7 | 6 | anbi2i 626 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎))) |
8 | anandi 676 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) | |
9 | 5, 7, 8 | 3bitri 300 | . . . 4 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
10 | 4, 9 | bitrdi 290 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
11 | elin 3882 | . . . 4 ⊢ (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ)) | |
12 | ellz1 40292 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) | |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) |
14 | elnnz1 12203 | . . . . . 6 ⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
16 | 13, 15 | anbi12d 634 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
17 | 11, 16 | syl5bb 286 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
18 | 10, 17 | bitr4d 285 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ))) |
19 | 18 | eqrdv 2735 | 1 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ∩ cin 3865 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 1c1 10730 + caddc 10732 ≤ cle 10868 ℕcn 11830 ℕ0cn0 12090 ℤcz 12176 ℤ≥cuz 12438 ...cfz 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 |
This theorem is referenced by: diophin 40297 |
Copyright terms: Public domain | W3C validator |