![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz1eqin | Structured version Visualization version GIF version |
Description: Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
fz1eqin | ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 11697 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | nn0z 11690 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | elfz1 12585 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
4 | 1, 2, 3 | sylancr 582 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) |
5 | 3anass 1117 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
6 | ancom 453 | . . . . . 6 ⊢ ((1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) | |
7 | 6 | anbi2i 617 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎))) |
8 | anandi 667 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) | |
9 | 5, 7, 8 | 3bitri 289 | . . . 4 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
10 | 4, 9 | syl6bb 279 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
11 | elin 3994 | . . . 4 ⊢ (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ)) | |
12 | ellz1 38116 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) | |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) |
14 | elnnz1 11693 | . . . . . 6 ⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
16 | 13, 15 | anbi12d 625 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
17 | 11, 16 | syl5bb 275 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
18 | 10, 17 | bitr4d 274 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ))) |
19 | 18 | eqrdv 2797 | 1 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∖ cdif 3766 ∩ cin 3768 class class class wbr 4843 ‘cfv 6101 (class class class)co 6878 1c1 10225 + caddc 10227 ≤ cle 10364 ℕcn 11312 ℕ0cn0 11580 ℤcz 11666 ℤ≥cuz 11930 ...cfz 12580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-fz 12581 |
This theorem is referenced by: diophin 38122 |
Copyright terms: Public domain | W3C validator |