Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz1eqin Structured version   Visualization version   GIF version

Theorem fz1eqin 39233
Description: Express a one-based finite range as the intersection of lower integers with . (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fz1eqin (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))

Proof of Theorem fz1eqin
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1z 12004 . . . . 5 1 ∈ ℤ
2 nn0z 11997 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 12890 . . . . 5 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
41, 2, 3sylancr 587 . . . 4 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
5 3anass 1089 . . . . 5 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)))
6 ancom 461 . . . . . 6 ((1 ≤ 𝑎𝑎𝑁) ↔ (𝑎𝑁 ∧ 1 ≤ 𝑎))
76anbi2i 622 . . . . 5 ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)))
8 anandi 672 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
95, 7, 83bitri 298 . . . 4 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
104, 9syl6bb 288 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
11 elin 4172 . . . 4 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ))
12 ellz1 39231 . . . . . 6 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
132, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
14 elnnz1 12000 . . . . . 6 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
1514a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
1613, 15anbi12d 630 . . . 4 (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1711, 16syl5bb 284 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1810, 17bitr4d 283 . 2 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
1918eqrdv 2823 1 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  cdif 3936  cin 3938   class class class wbr 5062  cfv 6351  (class class class)co 7151  1c1 10530   + caddc 10532  cle 10668  cn 11630  0cn0 11889  cz 11973  cuz 12235  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886
This theorem is referenced by:  diophin  39236
  Copyright terms: Public domain W3C validator