Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fz1eqin Structured version   Visualization version   GIF version

Theorem fz1eqin 40294
Description: Express a one-based finite range as the intersection of lower integers with . (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fz1eqin (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))

Proof of Theorem fz1eqin
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 1z 12207 . . . . 5 1 ∈ ℤ
2 nn0z 12200 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
3 elfz1 13100 . . . . 5 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
41, 2, 3sylancr 590 . . . 4 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁)))
5 3anass 1097 . . . . 5 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)))
6 ancom 464 . . . . . 6 ((1 ≤ 𝑎𝑎𝑁) ↔ (𝑎𝑁 ∧ 1 ≤ 𝑎))
76anbi2i 626 . . . . 5 ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎𝑎𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)))
8 anandi 676 . . . . 5 ((𝑎 ∈ ℤ ∧ (𝑎𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
95, 7, 83bitri 300 . . . 4 ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎𝑎𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
104, 9bitrdi 290 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
11 elin 3882 . . . 4 (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ))
12 ellz1 40292 . . . . . 6 (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
132, 12syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎𝑁)))
14 elnnz1 12203 . . . . . 6 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
1514a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))
1613, 15anbi12d 634 . . . 4 (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1711, 16syl5bb 286 . . 3 (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))))
1810, 17bitr4d 285 . 2 (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ)))
1918eqrdv 2735 1 (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ‘(𝑁 + 1))) ∩ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  cdif 3863  cin 3865   class class class wbr 5053  cfv 6380  (class class class)co 7213  1c1 10730   + caddc 10732  cle 10868  cn 11830  0cn0 12090  cz 12176  cuz 12438  ...cfz 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096
This theorem is referenced by:  diophin  40297
  Copyright terms: Public domain W3C validator