| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fz1eqin | Structured version Visualization version GIF version | ||
| Description: Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| fz1eqin | ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 12649 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 2 | nn0z 12640 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 3 | elfz1 13553 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
| 4 | 1, 2, 3 | sylancr 587 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) |
| 5 | 3anass 1094 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
| 6 | ancom 460 | . . . . . 6 ⊢ ((1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) | |
| 7 | 6 | anbi2i 623 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎))) |
| 8 | anandi 676 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) | |
| 9 | 5, 7, 8 | 3bitri 297 | . . . 4 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
| 10 | 4, 9 | bitrdi 287 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
| 11 | elin 3966 | . . . 4 ⊢ (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ)) | |
| 12 | ellz1 42783 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) | |
| 13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) |
| 14 | elnnz1 12645 | . . . . . 6 ⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
| 16 | 13, 15 | anbi12d 632 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
| 17 | 11, 16 | bitrid 283 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
| 18 | 10, 17 | bitr4d 282 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ))) |
| 19 | 18 | eqrdv 2734 | 1 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∖ cdif 3947 ∩ cin 3949 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 1c1 11157 + caddc 11159 ≤ cle 11297 ℕcn 12267 ℕ0cn0 12528 ℤcz 12615 ℤ≥cuz 12879 ...cfz 13548 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 |
| This theorem is referenced by: diophin 42788 |
| Copyright terms: Public domain | W3C validator |