![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fz1eqin | Structured version Visualization version GIF version |
Description: Express a one-based finite range as the intersection of lower integers with ℕ. (Contributed by Stefan O'Rear, 9-Oct-2014.) |
Ref | Expression |
---|---|
fz1eqin | ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 12644 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | nn0z 12635 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
3 | elfz1 13543 | . . . . 5 ⊢ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
4 | 1, 2, 3 | sylancr 585 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) |
5 | 3anass 1092 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁))) | |
6 | ancom 459 | . . . . . 6 ⊢ ((1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) | |
7 | 6 | anbi2i 621 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁)) ↔ (𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎))) |
8 | anandi 674 | . . . . 5 ⊢ ((𝑎 ∈ ℤ ∧ (𝑎 ≤ 𝑁 ∧ 1 ≤ 𝑎)) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) | |
9 | 5, 7, 8 | 3bitri 296 | . . . 4 ⊢ ((𝑎 ∈ ℤ ∧ 1 ≤ 𝑎 ∧ 𝑎 ≤ 𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
10 | 4, 9 | bitrdi 286 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
11 | elin 3963 | . . . 4 ⊢ (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ)) | |
12 | ellz1 42424 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) | |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ↔ (𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁))) |
14 | elnnz1 12640 | . . . . . 6 ⊢ (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))) |
16 | 13, 15 | anbi12d 630 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((𝑎 ∈ (ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∧ 𝑎 ∈ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
17 | 11, 16 | bitrid 282 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ) ↔ ((𝑎 ∈ ℤ ∧ 𝑎 ≤ 𝑁) ∧ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎)))) |
18 | 10, 17 | bitr4d 281 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑎 ∈ (1...𝑁) ↔ 𝑎 ∈ ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ))) |
19 | 18 | eqrdv 2724 | 1 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) = ((ℤ ∖ (ℤ≥‘(𝑁 + 1))) ∩ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ∩ cin 3946 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 1c1 11159 + caddc 11161 ≤ cle 11299 ℕcn 12264 ℕ0cn0 12524 ℤcz 12610 ℤ≥cuz 12874 ...cfz 13538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 |
This theorem is referenced by: diophin 42429 |
Copyright terms: Public domain | W3C validator |