Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzun Structured version   Visualization version   GIF version

Theorem cntzun 33048
Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzun ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))

Proof of Theorem cntzun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralunb 4144 . . . . . . 7 (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
21a1i 11 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
32pm5.32da 579 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ (𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
4 anandi 676 . . . . 5 ((𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
53, 4bitrdi 287 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
6 unss 4137 . . . . 5 ((𝑋𝐵𝑌𝐵) ↔ (𝑋𝑌) ⊆ 𝐵)
7 cntzun.b . . . . . 6 𝐵 = (Base‘𝑀)
8 eqid 2731 . . . . . 6 (+g𝑀) = (+g𝑀)
9 cntzun.z . . . . . 6 𝑍 = (Cntz‘𝑀)
107, 8, 9elcntz 19234 . . . . 5 ((𝑋𝑌) ⊆ 𝐵 → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
116, 10sylbi 217 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
127, 8, 9elcntz 19234 . . . . 5 (𝑋𝐵 → (𝑥 ∈ (𝑍𝑋) ↔ (𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
137, 8, 9elcntz 19234 . . . . 5 (𝑌𝐵 → (𝑥 ∈ (𝑍𝑌) ↔ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
1412, 13bi2anan9 638 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
155, 11, 143bitr4d 311 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌))))
16 elin 3913 . . 3 (𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)))
1715, 16bitr4di 289 . 2 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ 𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌))))
1817eqrdv 2729 1 ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  cun 3895  cin 3896  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Cntzccntz 19227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-cntz 19229
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator