Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzun Structured version   Visualization version   GIF version

Theorem cntzun 31902
Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzun ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))

Proof of Theorem cntzun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralunb 4151 . . . . . . 7 (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
21a1i 11 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
32pm5.32da 579 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ (𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
4 anandi 674 . . . . 5 ((𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
53, 4bitrdi 286 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
6 unss 4144 . . . . 5 ((𝑋𝐵𝑌𝐵) ↔ (𝑋𝑌) ⊆ 𝐵)
7 cntzun.b . . . . . 6 𝐵 = (Base‘𝑀)
8 eqid 2736 . . . . . 6 (+g𝑀) = (+g𝑀)
9 cntzun.z . . . . . 6 𝑍 = (Cntz‘𝑀)
107, 8, 9elcntz 19102 . . . . 5 ((𝑋𝑌) ⊆ 𝐵 → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
116, 10sylbi 216 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
127, 8, 9elcntz 19102 . . . . 5 (𝑋𝐵 → (𝑥 ∈ (𝑍𝑋) ↔ (𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
137, 8, 9elcntz 19102 . . . . 5 (𝑌𝐵 → (𝑥 ∈ (𝑍𝑌) ↔ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
1412, 13bi2anan9 637 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
155, 11, 143bitr4d 310 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌))))
16 elin 3926 . . 3 (𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)))
1715, 16bitr4di 288 . 2 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ 𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌))))
1817eqrdv 2734 1 ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cun 3908  cin 3909  wss 3910  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Cntzccntz 19095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-cntz 19097
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator