Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzun Structured version   Visualization version   GIF version

Theorem cntzun 31222
Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzun ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))

Proof of Theorem cntzun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralunb 4121 . . . . . . 7 (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
21a1i 11 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
32pm5.32da 578 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ (𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
4 anandi 672 . . . . 5 ((𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
53, 4bitrdi 286 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
6 unss 4114 . . . . 5 ((𝑋𝐵𝑌𝐵) ↔ (𝑋𝑌) ⊆ 𝐵)
7 cntzun.b . . . . . 6 𝐵 = (Base‘𝑀)
8 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
9 cntzun.z . . . . . 6 𝑍 = (Cntz‘𝑀)
107, 8, 9elcntz 18843 . . . . 5 ((𝑋𝑌) ⊆ 𝐵 → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
116, 10sylbi 216 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
127, 8, 9elcntz 18843 . . . . 5 (𝑋𝐵 → (𝑥 ∈ (𝑍𝑋) ↔ (𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
137, 8, 9elcntz 18843 . . . . 5 (𝑌𝐵 → (𝑥 ∈ (𝑍𝑌) ↔ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
1412, 13bi2anan9 635 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
155, 11, 143bitr4d 310 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌))))
16 elin 3899 . . 3 (𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)))
1715, 16bitr4di 288 . 2 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ 𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌))))
1817eqrdv 2736 1 ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cun 3881  cin 3882  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-cntz 18838
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator