Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzun Structured version   Visualization version   GIF version

Theorem cntzun 31320
Description: The centralizer of a union is the intersection of the centralizers. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzun ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))

Proof of Theorem cntzun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ralunb 4125 . . . . . . 7 (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))
21a1i 11 . . . . . 6 (((𝑋𝐵𝑌𝐵) ∧ 𝑥𝐵) → (∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ↔ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
32pm5.32da 579 . . . . 5 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ (𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
4 anandi 673 . . . . 5 ((𝑥𝐵 ∧ (∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥) ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
53, 4bitrdi 287 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
6 unss 4118 . . . . 5 ((𝑋𝐵𝑌𝐵) ↔ (𝑋𝑌) ⊆ 𝐵)
7 cntzun.b . . . . . 6 𝐵 = (Base‘𝑀)
8 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
9 cntzun.z . . . . . 6 𝑍 = (Cntz‘𝑀)
107, 8, 9elcntz 18928 . . . . 5 ((𝑋𝑌) ⊆ 𝐵 → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
116, 10sylbi 216 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥𝐵 ∧ ∀𝑦 ∈ (𝑋𝑌)(𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
127, 8, 9elcntz 18928 . . . . 5 (𝑋𝐵 → (𝑥 ∈ (𝑍𝑋) ↔ (𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
137, 8, 9elcntz 18928 . . . . 5 (𝑌𝐵 → (𝑥 ∈ (𝑍𝑌) ↔ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥))))
1412, 13bi2anan9 636 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)) ↔ ((𝑥𝐵 ∧ ∀𝑦𝑋 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)) ∧ (𝑥𝐵 ∧ ∀𝑦𝑌 (𝑥(+g𝑀)𝑦) = (𝑦(+g𝑀)𝑥)))))
155, 11, 143bitr4d 311 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌))))
16 elin 3903 . . 3 (𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌)) ↔ (𝑥 ∈ (𝑍𝑋) ∧ 𝑥 ∈ (𝑍𝑌)))
1715, 16bitr4di 289 . 2 ((𝑋𝐵𝑌𝐵) → (𝑥 ∈ (𝑍‘(𝑋𝑌)) ↔ 𝑥 ∈ ((𝑍𝑋) ∩ (𝑍𝑌))))
1817eqrdv 2736 1 ((𝑋𝐵𝑌𝐵) → (𝑍‘(𝑋𝑌)) = ((𝑍𝑋) ∩ (𝑍𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cun 3885  cin 3886  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Cntzccntz 18921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-cntz 18923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator