Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin71ac | Structured version Visualization version GIF version |
Description: Once we allow AC, the "strongest" definition of finite set becomes equivalent to the "weakest" and the entire hierarchy collapses. (Contributed by Stefan O'Rear, 29-Oct-2014.) |
Ref | Expression |
---|---|
fin71ac | ⊢ FinVII = Fin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axac3 10126 | . 2 ⊢ CHOICE | |
2 | dfacfin7 10061 | . 2 ⊢ (CHOICE ↔ FinVII = Fin) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ FinVII = Fin |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 Fincfn 8668 CHOICEwac 9777 FinVIIcfin7 9946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-ac2 10125 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-om 7685 df-wrecs 8089 df-recs 8150 df-1o 8244 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-card 9603 df-ac 9778 df-fin7 9953 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |