Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcls | Structured version Visualization version GIF version |
Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
ptcls.2 | ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) |
ptcls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcls.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) |
ptcls.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
ptcls | ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcls.2 | . 2 ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) | |
2 | ptcls.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ptcls.j | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) | |
4 | ptcls.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) | |
5 | toponmax 22071 | . . . . . . 7 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝑅) |
7 | 6, 4 | ssexd 5252 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ V) |
8 | 7 | ralrimiva 3110 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ V) |
9 | iunexg 7797 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝑆 ∈ V) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) | |
10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) |
11 | axac3 10219 | . . . 4 ⊢ CHOICE | |
12 | acacni 9895 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | |
13 | 11, 2, 12 | sylancr 587 | . . 3 ⊢ (𝜑 → AC 𝐴 = V) |
14 | 10, 13 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) |
15 | 1, 2, 3, 4, 14 | ptclsg 22762 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ⊆ wss 3892 ∪ ciun 4930 ↦ cmpt 5162 ‘cfv 6431 Xcixp 8666 AC wacn 9695 CHOICEwac 9870 ∏tcpt 17145 TopOnctopon 22055 clsccl 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-ac2 10218 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-1o 8286 df-er 8479 df-map 8598 df-ixp 8667 df-en 8715 df-dom 8716 df-fin 8718 df-fi 9146 df-card 9696 df-acn 9699 df-ac 9871 df-topgen 17150 df-pt 17151 df-top 22039 df-topon 22056 df-bases 22092 df-cld 22166 df-ntr 22167 df-cls 22168 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |