Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcls | Structured version Visualization version GIF version |
Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
ptcls.2 | ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) |
ptcls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcls.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) |
ptcls.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) |
Ref | Expression |
---|---|
ptcls | ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ptcls.2 | . 2 ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) | |
2 | ptcls.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ptcls.j | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) | |
4 | ptcls.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) | |
5 | toponmax 21983 | . . . . . . 7 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝑅) |
7 | 6, 4 | ssexd 5243 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ V) |
8 | 7 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ V) |
9 | iunexg 7779 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝑆 ∈ V) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) | |
10 | 2, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) |
11 | axac3 10151 | . . . 4 ⊢ CHOICE | |
12 | acacni 9827 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | |
13 | 11, 2, 12 | sylancr 586 | . . 3 ⊢ (𝜑 → AC 𝐴 = V) |
14 | 10, 13 | eleqtrrd 2842 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) |
15 | 1, 2, 3, 4, 14 | ptclsg 22674 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 ∪ ciun 4921 ↦ cmpt 5153 ‘cfv 6418 Xcixp 8643 AC wacn 9627 CHOICEwac 9802 ∏tcpt 17066 TopOnctopon 21967 clsccl 22077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-card 9628 df-acn 9631 df-ac 9803 df-topgen 17071 df-pt 17072 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |