| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcls | Structured version Visualization version GIF version | ||
| Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| ptcls.2 | ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) |
| ptcls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptcls.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) |
| ptcls.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| ptcls | ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | . 2 ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) | |
| 2 | ptcls.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ptcls.j | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) | |
| 4 | ptcls.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) | |
| 5 | toponmax 22813 | . . . . . . 7 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝑅) |
| 7 | 6, 4 | ssexd 5279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ V) |
| 8 | 7 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 9 | iunexg 7942 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝑆 ∈ V) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) | |
| 10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 11 | axac3 10417 | . . . 4 ⊢ CHOICE | |
| 12 | acacni 10094 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | |
| 13 | 11, 2, 12 | sylancr 587 | . . 3 ⊢ (𝜑 → AC 𝐴 = V) |
| 14 | 10, 13 | eleqtrrd 2831 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) |
| 15 | 1, 2, 3, 4, 14 | ptclsg 23502 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ∪ ciun 4955 ↦ cmpt 5188 ‘cfv 6511 Xcixp 8870 AC wacn 9891 CHOICEwac 10068 ∏tcpt 17401 TopOnctopon 22797 clsccl 22905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-fin 8922 df-fi 9362 df-card 9892 df-acn 9895 df-ac 10069 df-topgen 17406 df-pt 17407 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |