| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcls | Structured version Visualization version GIF version | ||
| Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| ptcls.2 | ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) |
| ptcls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptcls.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) |
| ptcls.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| ptcls | ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | . 2 ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) | |
| 2 | ptcls.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ptcls.j | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) | |
| 4 | ptcls.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) | |
| 5 | toponmax 22820 | . . . . . . 7 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝑅) |
| 7 | 6, 4 | ssexd 5282 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ V) |
| 8 | 7 | ralrimiva 3126 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 9 | iunexg 7945 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝑆 ∈ V) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) | |
| 10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 11 | axac3 10424 | . . . 4 ⊢ CHOICE | |
| 12 | acacni 10101 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | |
| 13 | 11, 2, 12 | sylancr 587 | . . 3 ⊢ (𝜑 → AC 𝐴 = V) |
| 14 | 10, 13 | eleqtrrd 2832 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) |
| 15 | 1, 2, 3, 4, 14 | ptclsg 23509 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 ∪ ciun 4958 ↦ cmpt 5191 ‘cfv 6514 Xcixp 8873 AC wacn 9898 CHOICEwac 10075 ∏tcpt 17408 TopOnctopon 22804 clsccl 22912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-fin 8925 df-fi 9369 df-card 9899 df-acn 9902 df-ac 10076 df-topgen 17413 df-pt 17414 df-top 22788 df-topon 22805 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |