| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptcls | Structured version Visualization version GIF version | ||
| Description: The closure of a box in the product topology is the box formed from the closures of the factors. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| ptcls.2 | ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) |
| ptcls.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ptcls.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) |
| ptcls.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| ptcls | ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptcls.2 | . 2 ⊢ 𝐽 = (∏t‘(𝑘 ∈ 𝐴 ↦ 𝑅)) | |
| 2 | ptcls.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | ptcls.j | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑅 ∈ (TopOn‘𝑋)) | |
| 4 | ptcls.c | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ⊆ 𝑋) | |
| 5 | toponmax 22932 | . . . . . . 7 ⊢ (𝑅 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝑅) | |
| 6 | 3, 5 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝑅) |
| 7 | 6, 4 | ssexd 5324 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑆 ∈ V) |
| 8 | 7 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 9 | iunexg 7988 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝑆 ∈ V) → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) | |
| 10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ V) |
| 11 | axac3 10504 | . . . 4 ⊢ CHOICE | |
| 12 | acacni 10181 | . . . 4 ⊢ ((CHOICE ∧ 𝐴 ∈ 𝑉) → AC 𝐴 = V) | |
| 13 | 11, 2, 12 | sylancr 587 | . . 3 ⊢ (𝜑 → AC 𝐴 = V) |
| 14 | 10, 13 | eleqtrrd 2844 | . 2 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝑆 ∈ AC 𝐴) |
| 15 | 1, 2, 3, 4, 14 | ptclsg 23623 | 1 ⊢ (𝜑 → ((cls‘𝐽)‘X𝑘 ∈ 𝐴 𝑆) = X𝑘 ∈ 𝐴 ((cls‘𝑅)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 ∪ ciun 4991 ↦ cmpt 5225 ‘cfv 6561 Xcixp 8937 AC wacn 9978 CHOICEwac 10155 ∏tcpt 17483 TopOnctopon 22916 clsccl 23026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-ac2 10503 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-fin 8989 df-fi 9451 df-card 9979 df-acn 9982 df-ac 10156 df-topgen 17488 df-pt 17489 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |