Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsima Structured version   Visualization version   GIF version

Theorem ballotlemsima 32482
Description: The image by 𝑆 of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsima ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsima
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 imassrn 5980 . . . . . 6 ((𝑆𝐶) “ (1...𝐽)) ⊆ ran (𝑆𝐶)
2 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
3 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
4 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
5 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
6 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
7 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
8 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
9 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
10 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
112, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsf1o 32480 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1211simpld 495 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
13 f1of 6716 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁)))
14 frn 6607 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁)) → ran (𝑆𝐶) ⊆ (1...(𝑀 + 𝑁)))
1512, 13, 143syl 18 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ran (𝑆𝐶) ⊆ (1...(𝑀 + 𝑁)))
161, 15sstrid 3932 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (1...𝐽)) ⊆ (1...(𝑀 + 𝑁)))
17 fzssuz 13297 . . . . . 6 (1...(𝑀 + 𝑁)) ⊆ (ℤ‘1)
18 uzssz 12603 . . . . . 6 (ℤ‘1) ⊆ ℤ
1917, 18sstri 3930 . . . . 5 (1...(𝑀 + 𝑁)) ⊆ ℤ
2016, 19sstrdi 3933 . . . 4 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (1...𝐽)) ⊆ ℤ)
2120adantr 481 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) ⊆ ℤ)
2221sselda 3921 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ((𝑆𝐶) “ (1...𝐽))) → 𝑘 ∈ ℤ)
23 elfzelz 13256 . . 3 (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) → 𝑘 ∈ ℤ)
2423adantl 482 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) → 𝑘 ∈ ℤ)
25 f1ofn 6717 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
2612, 25syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
2726adantr 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑆𝐶) Fn (1...(𝑀 + 𝑁)))
282, 3, 4, 5, 6, 7, 8, 9ballotlemiex 32468 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
2928simpld 495 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
3029adantr 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
31 elfzuz3 13253 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
3230, 31syl 17 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
33 elfzuz3 13253 . . . . . . . 8 (𝐽 ∈ (1...(𝐼𝐶)) → (𝐼𝐶) ∈ (ℤ𝐽))
3433adantl 482 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (ℤ𝐽))
35 uztrn 12600 . . . . . . 7 (((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ∧ (𝐼𝐶) ∈ (ℤ𝐽)) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
3632, 34, 35syl2anc 584 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
37 fzss2 13296 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
3836, 37syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
39 fvelimab 6841 . . . . 5 (((𝑆𝐶) Fn (1...(𝑀 + 𝑁)) ∧ (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
4027, 38, 39syl2anc 584 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
4140adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
42 1zzd 12351 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ∈ ℤ)
432nnzi 12344 . . . . . . . . . . . . 13 𝑀 ∈ ℤ
443nnzi 12344 . . . . . . . . . . . . 13 𝑁 ∈ ℤ
45 zaddcl 12360 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ)
4643, 44, 45mp2an 689 . . . . . . . . . . . 12 (𝑀 + 𝑁) ∈ ℤ
4746a1i 11 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ ℤ)
48 elfzelz 13256 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
4948adantl 482 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
50 elfzle1 13259 . . . . . . . . . . . 12 (𝐽 ∈ (1...(𝐼𝐶)) → 1 ≤ 𝐽)
5150adantl 482 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 1 ≤ 𝐽)
5249zred 12426 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℝ)
53 elfzelz 13256 . . . . . . . . . . . . . . 15 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℤ)
5429, 53syl 17 . . . . . . . . . . . . . 14 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
5554adantr 481 . . . . . . . . . . . . 13 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℤ)
5655zred 12426 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ ℝ)
5747zred 12426 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ ℝ)
58 elfzle2 13260 . . . . . . . . . . . . 13 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
5958adantl 482 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ≤ (𝐼𝐶))
60 elfzle2 13260 . . . . . . . . . . . . . 14 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6129, 60syl 17 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6261adantr 481 . . . . . . . . . . . 12 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
6352, 56, 57, 59, 62letrd 11132 . . . . . . . . . . 11 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ≤ (𝑀 + 𝑁))
6442, 47, 49, 51, 63elfzd 13247 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
652, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 32476 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
6664, 65syldan 591 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
67 simpr 485 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
68 iftrue 4465 . . . . . . . . . 10 (𝐽 ≤ (𝐼𝐶) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
6967, 58, 683syl 18 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
7066, 69eqtrd 2778 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶)‘𝐽) = (((𝐼𝐶) + 1) − 𝐽))
7170oveq1d 7290 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) = ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶)))
7271eleq2d 2824 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
7372adantr 481 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
7454ad2antrr 723 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼𝐶) ∈ ℤ)
7574zcnd 12427 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼𝐶) ∈ ℂ)
76 1cnd 10970 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈ ℂ)
7775, 76pncand 11333 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (((𝐼𝐶) + 1) − 1) = (𝐼𝐶))
7877oveq2d 7291 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) = ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶)))
7978eleq2d 2824 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ 𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(𝐼𝐶))))
80 1zzd 12351 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈ ℤ)
8148ad2antlr 724 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 𝐽 ∈ ℤ)
8274peano2zd 12429 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((𝐼𝐶) + 1) ∈ ℤ)
83 simpr 485 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
84 fzrev 13319 . . . . . 6 (((1 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝐼𝐶) + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
8580, 81, 82, 83, 84syl22anc 836 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼𝐶) + 1) − 𝐽)...(((𝐼𝐶) + 1) − 1)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
8673, 79, 853bitr2d 307 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽)))
87 risset 3194 . . . . 5 ((((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘))
8887a1i 11 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘)))
89 eqcom 2745 . . . . . . 7 ((((𝐼𝐶) + 1) − 𝑘) = 𝑗𝑗 = (((𝐼𝐶) + 1) − 𝑘))
9054ad2antrr 723 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℤ)
9190adantlr 712 . . . . . . . . . 10 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℤ)
9291zcnd 12427 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℂ)
93 1cnd 10970 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 1 ∈ ℂ)
9492, 93addcld 10994 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((𝐼𝐶) + 1) ∈ ℂ)
95 simplr 766 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℤ)
9695zcnd 12427 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℂ)
97 elfzelz 13256 . . . . . . . . . 10 (𝑗 ∈ (1...𝐽) → 𝑗 ∈ ℤ)
9897adantl 482 . . . . . . . . 9 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ)
9998zcnd 12427 . . . . . . . 8 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℂ)
100 subsub23 11226 . . . . . . . 8 ((((𝐼𝐶) + 1) ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((((𝐼𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
10194, 96, 99, 100syl3anc 1370 . . . . . . 7 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((((𝐼𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
10289, 101bitr3id 285 . . . . . 6 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
103 simpll 764 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐶 ∈ (𝑂𝐸))
10438sselda 3921 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ (1...(𝑀 + 𝑁)))
1052, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 32476 . . . . . . . . . 10 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
106103, 104, 105syl2anc 584 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆𝐶)‘𝑗) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
10797adantl 482 . . . . . . . . . . . 12 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ)
108107zred 12426 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℝ)
10948ad2antlr 724 . . . . . . . . . . . 12 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℤ)
110109zred 12426 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℝ)
11190zred 12426 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼𝐶) ∈ ℝ)
112 elfzle2 13260 . . . . . . . . . . . 12 (𝑗 ∈ (1...𝐽) → 𝑗𝐽)
113112adantl 482 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗𝐽)
11458ad2antlr 724 . . . . . . . . . . 11 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ≤ (𝐼𝐶))
115108, 110, 111, 113, 114letrd 11132 . . . . . . . . . 10 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ≤ (𝐼𝐶))
116 iftrue 4465 . . . . . . . . . 10 (𝑗 ≤ (𝐼𝐶) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = (((𝐼𝐶) + 1) − 𝑗))
117115, 116syl 17 . . . . . . . . 9 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = (((𝐼𝐶) + 1) − 𝑗))
118106, 117eqtrd 2778 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆𝐶)‘𝑗) = (((𝐼𝐶) + 1) − 𝑗))
119118eqeq1d 2740 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆𝐶)‘𝑗) = 𝑘 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
120119adantlr 712 . . . . . 6 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆𝐶)‘𝑗) = 𝑘 ↔ (((𝐼𝐶) + 1) − 𝑗) = 𝑘))
121102, 120bitr4d 281 . . . . 5 ((((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ ((𝑆𝐶)‘𝑗) = 𝑘))
122121rexbidva 3225 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼𝐶) + 1) − 𝑘) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
12386, 88, 1223bitrd 305 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆𝐶)‘𝑗) = 𝑘))
12441, 123bitr4d 281 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆𝐶) “ (1...𝐽)) ↔ 𝑘 ∈ (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
12522, 24, 124eqrdav 2737 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  cin 3886  wss 3887  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  infcinf 9200  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  cz 12319  cuz 12582  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-hash 14045
This theorem is referenced by:  ballotlemfrc  32493
  Copyright terms: Public domain W3C validator