| Step | Hyp | Ref
| Expression |
| 1 | | imassrn 6089 |
. . . . . 6
⊢ ((𝑆‘𝐶) “ (1...𝐽)) ⊆ ran (𝑆‘𝐶) |
| 2 | | ballotth.m |
. . . . . . . . 9
⊢ 𝑀 ∈ ℕ |
| 3 | | ballotth.n |
. . . . . . . . 9
⊢ 𝑁 ∈ ℕ |
| 4 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| 5 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| 6 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
| 7 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 8 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
| 9 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 10 | | ballotth.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemsf1o 34516 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
| 12 | 11 | simpld 494 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
| 13 | | f1of 6848 |
. . . . . . 7
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁))) |
| 14 | | frn 6743 |
. . . . . . 7
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))⟶(1...(𝑀 + 𝑁)) → ran (𝑆‘𝐶) ⊆ (1...(𝑀 + 𝑁))) |
| 15 | 12, 13, 14 | 3syl 18 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ran (𝑆‘𝐶) ⊆ (1...(𝑀 + 𝑁))) |
| 16 | 1, 15 | sstrid 3995 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ (1...𝐽)) ⊆ (1...(𝑀 + 𝑁))) |
| 17 | | fzssuz 13605 |
. . . . . 6
⊢
(1...(𝑀 + 𝑁)) ⊆
(ℤ≥‘1) |
| 18 | | uzssz 12899 |
. . . . . 6
⊢
(ℤ≥‘1) ⊆ ℤ |
| 19 | 17, 18 | sstri 3993 |
. . . . 5
⊢
(1...(𝑀 + 𝑁)) ⊆
ℤ |
| 20 | 16, 19 | sstrdi 3996 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ (1...𝐽)) ⊆ ℤ) |
| 21 | 20 | adantr 480 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (1...𝐽)) ⊆ ℤ) |
| 22 | 21 | sselda 3983 |
. 2
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ((𝑆‘𝐶) “ (1...𝐽))) → 𝑘 ∈ ℤ) |
| 23 | | elfzelz 13564 |
. . 3
⊢ (𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) → 𝑘 ∈ ℤ) |
| 24 | 23 | adantl 481 |
. 2
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) → 𝑘 ∈ ℤ) |
| 25 | | f1ofn 6849 |
. . . . . . 7
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶) Fn (1...(𝑀 + 𝑁))) |
| 26 | 12, 25 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) Fn (1...(𝑀 + 𝑁))) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑆‘𝐶) Fn (1...(𝑀 + 𝑁))) |
| 28 | 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemiex 34504 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 29 | 28 | simpld 494 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 30 | 29 | adantr 480 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 31 | | elfzuz3 13561 |
. . . . . . . 8
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
| 32 | 30, 31 | syl 17 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
| 33 | | elfzuz3 13561 |
. . . . . . . 8
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) |
| 34 | 33 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) |
| 35 | | uztrn 12896 |
. . . . . . 7
⊢ (((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) ∧ (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) |
| 36 | 32, 34, 35 | syl2anc 584 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) |
| 37 | | fzss2 13604 |
. . . . . 6
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) |
| 38 | 36, 37 | syl 17 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) |
| 39 | | fvelimab 6981 |
. . . . 5
⊢ (((𝑆‘𝐶) Fn (1...(𝑀 + 𝑁)) ∧ (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) → (𝑘 ∈ ((𝑆‘𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 40 | 27, 38, 39 | syl2anc 584 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑘 ∈ ((𝑆‘𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 41 | 40 | adantr 480 |
. . 3
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆‘𝐶) “ (1...𝐽)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 42 | | 1zzd 12648 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℤ) |
| 43 | 2 | nnzi 12641 |
. . . . . . . . . . . . 13
⊢ 𝑀 ∈ ℤ |
| 44 | 3 | nnzi 12641 |
. . . . . . . . . . . . 13
⊢ 𝑁 ∈ ℤ |
| 45 | | zaddcl 12657 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
| 46 | 43, 44, 45 | mp2an 692 |
. . . . . . . . . . . 12
⊢ (𝑀 + 𝑁) ∈ ℤ |
| 47 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈ ℤ) |
| 48 | | elfzelz 13564 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
| 49 | 48 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
| 50 | | elfzle1 13567 |
. . . . . . . . . . . 12
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 1 ≤ 𝐽) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ≤ 𝐽) |
| 52 | 49 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℝ) |
| 53 | | elfzelz 13564 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) |
| 54 | 29, 53 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℤ) |
| 56 | 55 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℝ) |
| 57 | 47 | zred 12722 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈ ℝ) |
| 58 | | elfzle2 13568 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ≤ (𝐼‘𝐶)) |
| 59 | 58 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (𝐼‘𝐶)) |
| 60 | | elfzle2 13568 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 61 | 29, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 63 | 52, 56, 57, 59, 62 | letrd 11418 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (𝑀 + 𝑁)) |
| 64 | 42, 47, 49, 51, 63 | elfzd 13555 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) |
| 65 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemsv 34512 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 66 | 64, 65 | syldan 591 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 67 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝐼‘𝐶))) |
| 68 | | iftrue 4531 |
. . . . . . . . . 10
⊢ (𝐽 ≤ (𝐼‘𝐶) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 69 | 67, 58, 68 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 70 | 66, 69 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 71 | 70 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) = ((((𝐼‘𝐶) + 1) − 𝐽)...(𝐼‘𝐶))) |
| 72 | 71 | eleq2d 2827 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ↔ 𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(𝐼‘𝐶)))) |
| 73 | 72 | adantr 480 |
. . . . 5
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ↔ 𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(𝐼‘𝐶)))) |
| 74 | 54 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼‘𝐶) ∈ ℤ) |
| 75 | 74 | zcnd 12723 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝐼‘𝐶) ∈ ℂ) |
| 76 | | 1cnd 11256 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈
ℂ) |
| 77 | 75, 76 | pncand 11621 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
| 78 | 77 | oveq2d 7447 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼‘𝐶) + 1) − 𝐽)...(((𝐼‘𝐶) + 1) − 1)) = ((((𝐼‘𝐶) + 1) − 𝐽)...(𝐼‘𝐶))) |
| 79 | 78 | eleq2d 2827 |
. . . . 5
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(((𝐼‘𝐶) + 1) − 1)) ↔ 𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(𝐼‘𝐶)))) |
| 80 | | 1zzd 12648 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → 1 ∈
ℤ) |
| 81 | 48 | ad2antlr 727 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → 𝐽 ∈ ℤ) |
| 82 | 74 | peano2zd 12725 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → ((𝐼‘𝐶) + 1) ∈ ℤ) |
| 83 | | simpr 484 |
. . . . . 6
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) |
| 84 | | fzrev 13627 |
. . . . . 6
⊢ (((1
∈ ℤ ∧ 𝐽
∈ ℤ) ∧ (((𝐼‘𝐶) + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ)) → (𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(((𝐼‘𝐶) + 1) − 1)) ↔ (((𝐼‘𝐶) + 1) − 𝑘) ∈ (1...𝐽))) |
| 85 | 80, 81, 82, 83, 84 | syl22anc 839 |
. . . . 5
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((((𝐼‘𝐶) + 1) − 𝐽)...(((𝐼‘𝐶) + 1) − 1)) ↔ (((𝐼‘𝐶) + 1) − 𝑘) ∈ (1...𝐽))) |
| 86 | 73, 79, 85 | 3bitr2d 307 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ↔ (((𝐼‘𝐶) + 1) − 𝑘) ∈ (1...𝐽))) |
| 87 | | risset 3233 |
. . . . 5
⊢ ((((𝐼‘𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼‘𝐶) + 1) − 𝑘)) |
| 88 | 87 | a1i 11 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → ((((𝐼‘𝐶) + 1) − 𝑘) ∈ (1...𝐽) ↔ ∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼‘𝐶) + 1) − 𝑘))) |
| 89 | | eqcom 2744 |
. . . . . . 7
⊢ ((((𝐼‘𝐶) + 1) − 𝑘) = 𝑗 ↔ 𝑗 = (((𝐼‘𝐶) + 1) − 𝑘)) |
| 90 | 54 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼‘𝐶) ∈ ℤ) |
| 91 | 90 | adantlr 715 |
. . . . . . . . . 10
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼‘𝐶) ∈ ℤ) |
| 92 | 91 | zcnd 12723 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼‘𝐶) ∈ ℂ) |
| 93 | | 1cnd 11256 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 1 ∈ ℂ) |
| 94 | 92, 93 | addcld 11280 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((𝐼‘𝐶) + 1) ∈ ℂ) |
| 95 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℤ) |
| 96 | 95 | zcnd 12723 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑘 ∈ ℂ) |
| 97 | | elfzelz 13564 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...𝐽) → 𝑗 ∈ ℤ) |
| 98 | 97 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ) |
| 99 | 98 | zcnd 12723 |
. . . . . . . 8
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℂ) |
| 100 | | subsub23 11513 |
. . . . . . . 8
⊢ ((((𝐼‘𝐶) + 1) ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑗 ∈ ℂ) →
((((𝐼‘𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼‘𝐶) + 1) − 𝑗) = 𝑘)) |
| 101 | 94, 96, 99, 100 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → ((((𝐼‘𝐶) + 1) − 𝑘) = 𝑗 ↔ (((𝐼‘𝐶) + 1) − 𝑗) = 𝑘)) |
| 102 | 89, 101 | bitr3id 285 |
. . . . . 6
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼‘𝐶) + 1) − 𝑘) ↔ (((𝐼‘𝐶) + 1) − 𝑗) = 𝑘)) |
| 103 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐶 ∈ (𝑂 ∖ 𝐸)) |
| 104 | 38 | sselda 3983 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ (1...(𝑀 + 𝑁))) |
| 105 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemsv 34512 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝑗) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
| 106 | 103, 104,
105 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆‘𝐶)‘𝑗) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
| 107 | 97 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℤ) |
| 108 | 107 | zred 12722 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ∈ ℝ) |
| 109 | 48 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℤ) |
| 110 | 109 | zred 12722 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ∈ ℝ) |
| 111 | 90 | zred 12722 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (𝐼‘𝐶) ∈ ℝ) |
| 112 | | elfzle2 13568 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (1...𝐽) → 𝑗 ≤ 𝐽) |
| 113 | 112 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ≤ 𝐽) |
| 114 | 58 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝐽 ≤ (𝐼‘𝐶)) |
| 115 | 108, 110,
111, 113, 114 | letrd 11418 |
. . . . . . . . . 10
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → 𝑗 ≤ (𝐼‘𝐶)) |
| 116 | | iftrue 4531 |
. . . . . . . . . 10
⊢ (𝑗 ≤ (𝐼‘𝐶) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = (((𝐼‘𝐶) + 1) − 𝑗)) |
| 117 | 115, 116 | syl 17 |
. . . . . . . . 9
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = (((𝐼‘𝐶) + 1) − 𝑗)) |
| 118 | 106, 117 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → ((𝑆‘𝐶)‘𝑗) = (((𝐼‘𝐶) + 1) − 𝑗)) |
| 119 | 118 | eqeq1d 2739 |
. . . . . . 7
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆‘𝐶)‘𝑗) = 𝑘 ↔ (((𝐼‘𝐶) + 1) − 𝑗) = 𝑘)) |
| 120 | 119 | adantlr 715 |
. . . . . 6
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (((𝑆‘𝐶)‘𝑗) = 𝑘 ↔ (((𝐼‘𝐶) + 1) − 𝑗) = 𝑘)) |
| 121 | 102, 120 | bitr4d 282 |
. . . . 5
⊢ ((((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) ∧ 𝑗 ∈ (1...𝐽)) → (𝑗 = (((𝐼‘𝐶) + 1) − 𝑘) ↔ ((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 122 | 121 | rexbidva 3177 |
. . . 4
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (∃𝑗 ∈ (1...𝐽)𝑗 = (((𝐼‘𝐶) + 1) − 𝑘) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 123 | 86, 88, 122 | 3bitrd 305 |
. . 3
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ↔ ∃𝑗 ∈ (1...𝐽)((𝑆‘𝐶)‘𝑗) = 𝑘)) |
| 124 | 41, 123 | bitr4d 282 |
. 2
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ((𝑆‘𝐶) “ (1...𝐽)) ↔ 𝑘 ∈ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |
| 125 | 22, 24, 124 | eqrdav 2736 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (1...𝐽)) = (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) |