| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsval | Structured version Visualization version GIF version | ||
| Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| Ref | Expression |
|---|---|
| ballotlemsval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶) | |
| 2 | 1 | fveq2d 6832 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑑) = (𝐼‘𝐶)) |
| 3 | 2 | breq2d 5105 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑑) ↔ 𝑖 ≤ (𝐼‘𝐶))) |
| 4 | 2 | oveq1d 7367 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑑) + 1) = ((𝐼‘𝐶) + 1)) |
| 5 | 4 | oveq1d 7367 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑑) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑖)) |
| 6 | 3, 5 | ifbieq1d 4499 | . . 3 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) |
| 7 | 6 | mpteq2dva 5186 | . 2 ⊢ (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| 8 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 9 | simpl 482 | . . . . . . . 8 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑) | |
| 10 | 9 | fveq2d 6832 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑐) = (𝐼‘𝑑)) |
| 11 | 10 | breq2d 5105 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑐) ↔ 𝑖 ≤ (𝐼‘𝑑))) |
| 12 | 10 | oveq1d 7367 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑐) + 1) = ((𝐼‘𝑑) + 1)) |
| 13 | 12 | oveq1d 7367 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑐) + 1) − 𝑖) = (((𝐼‘𝑑) + 1) − 𝑖)) |
| 14 | 11, 13 | ifbieq1d 4499 | . . . . 5 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) |
| 15 | 14 | mpteq2dva 5186 | . . . 4 ⊢ (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 16 | 15 | cbvmptv 5197 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 17 | 8, 16 | eqtri 2756 | . 2 ⊢ 𝑆 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 18 | ovex 7385 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
| 19 | 18 | mptex 7163 | . 2 ⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) ∈ V |
| 20 | 7, 17, 19 | fvmpt 6935 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ∖ cdif 3895 ∩ cin 3897 ifcif 4474 𝒫 cpw 4549 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 infcinf 9332 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 − cmin 11351 / cdiv 11781 ℕcn 12132 ℤcz 12475 ...cfz 13409 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: ballotlemsv 34544 ballotlemsf1o 34548 ballotlemieq 34551 |
| Copyright terms: Public domain | W3C validator |