| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsval | Structured version Visualization version GIF version | ||
| Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| Ref | Expression |
|---|---|
| ballotlemsval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶) | |
| 2 | 1 | fveq2d 6909 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑑) = (𝐼‘𝐶)) |
| 3 | 2 | breq2d 5154 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑑) ↔ 𝑖 ≤ (𝐼‘𝐶))) |
| 4 | 2 | oveq1d 7447 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑑) + 1) = ((𝐼‘𝐶) + 1)) |
| 5 | 4 | oveq1d 7447 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑑) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑖)) |
| 6 | 3, 5 | ifbieq1d 4549 | . . 3 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) |
| 7 | 6 | mpteq2dva 5241 | . 2 ⊢ (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| 8 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 9 | simpl 482 | . . . . . . . 8 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑) | |
| 10 | 9 | fveq2d 6909 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑐) = (𝐼‘𝑑)) |
| 11 | 10 | breq2d 5154 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑐) ↔ 𝑖 ≤ (𝐼‘𝑑))) |
| 12 | 10 | oveq1d 7447 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑐) + 1) = ((𝐼‘𝑑) + 1)) |
| 13 | 12 | oveq1d 7447 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑐) + 1) − 𝑖) = (((𝐼‘𝑑) + 1) − 𝑖)) |
| 14 | 11, 13 | ifbieq1d 4549 | . . . . 5 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) |
| 15 | 14 | mpteq2dva 5241 | . . . 4 ⊢ (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 16 | 15 | cbvmptv 5254 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 17 | 8, 16 | eqtri 2764 | . 2 ⊢ 𝑆 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 18 | ovex 7465 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
| 19 | 18 | mptex 7244 | . 2 ⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) ∈ V |
| 20 | 7, 17, 19 | fvmpt 7015 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 ∖ cdif 3947 ∩ cin 3949 ifcif 4524 𝒫 cpw 4599 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 infcinf 9482 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 ≤ cle 11297 − cmin 11493 / cdiv 11921 ℕcn 12267 ℤcz 12615 ...cfz 13548 ♯chash 14370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 |
| This theorem is referenced by: ballotlemsv 34513 ballotlemsf1o 34517 ballotlemieq 34520 |
| Copyright terms: Public domain | W3C validator |