Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsval Structured version   Visualization version   GIF version

Theorem ballotlemsval 34507
Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsval (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶)
21fveq2d 6865 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑑) = (𝐼𝐶))
32breq2d 5122 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑑) ↔ 𝑖 ≤ (𝐼𝐶)))
42oveq1d 7405 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑑) + 1) = ((𝐼𝐶) + 1))
54oveq1d 7405 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑑) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑖))
63, 5ifbieq1d 4516 . . 3 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
76mpteq2dva 5203 . 2 (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
8 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
9 simpl 482 . . . . . . . 8 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑)
109fveq2d 6865 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑐) = (𝐼𝑑))
1110breq2d 5122 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑐) ↔ 𝑖 ≤ (𝐼𝑑)))
1210oveq1d 7405 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑐) + 1) = ((𝐼𝑑) + 1))
1312oveq1d 7405 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑐) + 1) − 𝑖) = (((𝐼𝑑) + 1) − 𝑖))
1411, 13ifbieq1d 4516 . . . . 5 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖))
1514mpteq2dva 5203 . . . 4 (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
1615cbvmptv 5214 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
178, 16eqtri 2753 . 2 𝑆 = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
18 ovex 7423 . . 3 (1...(𝑀 + 𝑁)) ∈ V
1918mptex 7200 . 2 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) ∈ V
207, 17, 19fvmpt 6971 1 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  cin 3916  ifcif 4491  𝒫 cpw 4566   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  ...cfz 13475  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393
This theorem is referenced by:  ballotlemsv  34508  ballotlemsf1o  34512  ballotlemieq  34515
  Copyright terms: Public domain W3C validator