| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsval | Structured version Visualization version GIF version | ||
| Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| Ref | Expression |
|---|---|
| ballotlemsval | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . . 6 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶) | |
| 2 | 1 | fveq2d 6885 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑑) = (𝐼‘𝐶)) |
| 3 | 2 | breq2d 5136 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑑) ↔ 𝑖 ≤ (𝐼‘𝐶))) |
| 4 | 2 | oveq1d 7425 | . . . . 5 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑑) + 1) = ((𝐼‘𝐶) + 1)) |
| 5 | 4 | oveq1d 7425 | . . . 4 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑑) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑖)) |
| 6 | 3, 5 | ifbieq1d 4530 | . . 3 ⊢ ((𝑑 = 𝐶 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) |
| 7 | 6 | mpteq2dva 5219 | . 2 ⊢ (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| 8 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 9 | simpl 482 | . . . . . . . 8 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑) | |
| 10 | 9 | fveq2d 6885 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝑐) = (𝐼‘𝑑)) |
| 11 | 10 | breq2d 5136 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼‘𝑐) ↔ 𝑖 ≤ (𝐼‘𝑑))) |
| 12 | 10 | oveq1d 7425 | . . . . . . 7 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼‘𝑐) + 1) = ((𝐼‘𝑑) + 1)) |
| 13 | 12 | oveq1d 7425 | . . . . . 6 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝑐) + 1) − 𝑖) = (((𝐼‘𝑑) + 1) − 𝑖)) |
| 14 | 11, 13 | ifbieq1d 4530 | . . . . 5 ⊢ ((𝑐 = 𝑑 ∧ 𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖)) |
| 15 | 14 | mpteq2dva 5219 | . . . 4 ⊢ (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 16 | 15 | cbvmptv 5230 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 17 | 8, 16 | eqtri 2759 | . 2 ⊢ 𝑆 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑑), (((𝐼‘𝑑) + 1) − 𝑖), 𝑖))) |
| 18 | ovex 7443 | . . 3 ⊢ (1...(𝑀 + 𝑁)) ∈ V | |
| 19 | 18 | mptex 7220 | . 2 ⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) ∈ V |
| 20 | 7, 17, 19 | fvmpt 6991 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 ∖ cdif 3928 ∩ cin 3930 ifcif 4505 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 infcinf 9458 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕcn 12245 ℤcz 12593 ...cfz 13529 ♯chash 14353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: ballotlemsv 34547 ballotlemsf1o 34551 ballotlemieq 34554 |
| Copyright terms: Public domain | W3C validator |