Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsval Structured version   Visualization version   GIF version

Theorem ballotlemsval 34476
Description: Value of 𝑆. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsval (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑑 = 𝐶)
21fveq2d 6830 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑑) = (𝐼𝐶))
32breq2d 5107 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑑) ↔ 𝑖 ≤ (𝐼𝐶)))
42oveq1d 7368 . . . . 5 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑑) + 1) = ((𝐼𝐶) + 1))
54oveq1d 7368 . . . 4 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑑) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑖))
63, 5ifbieq1d 4503 . . 3 ((𝑑 = 𝐶𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖))
76mpteq2dva 5188 . 2 (𝑑 = 𝐶 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
8 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
9 simpl 482 . . . . . . . 8 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → 𝑐 = 𝑑)
109fveq2d 6830 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝐼𝑐) = (𝐼𝑑))
1110breq2d 5107 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (𝑖 ≤ (𝐼𝑐) ↔ 𝑖 ≤ (𝐼𝑑)))
1210oveq1d 7368 . . . . . . 7 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → ((𝐼𝑐) + 1) = ((𝐼𝑑) + 1))
1312oveq1d 7368 . . . . . 6 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → (((𝐼𝑐) + 1) − 𝑖) = (((𝐼𝑑) + 1) − 𝑖))
1411, 13ifbieq1d 4503 . . . . 5 ((𝑐 = 𝑑𝑖 ∈ (1...(𝑀 + 𝑁))) → if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖) = if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖))
1514mpteq2dva 5188 . . . 4 (𝑐 = 𝑑 → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
1615cbvmptv 5199 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖))) = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
178, 16eqtri 2752 . 2 𝑆 = (𝑑 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑑), (((𝐼𝑑) + 1) − 𝑖), 𝑖)))
18 ovex 7386 . . 3 (1...(𝑀 + 𝑁)) ∈ V
1918mptex 7163 . 2 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) ∈ V
207, 17, 19fvmpt 6934 1 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  cdif 3902  cin 3904  ifcif 4478  𝒫 cpw 4553   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  infcinf 9350  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  cz 12489  ...cfz 13428  chash 14255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356
This theorem is referenced by:  ballotlemsv  34477  ballotlemsf1o  34481  ballotlemieq  34484
  Copyright terms: Public domain W3C validator