| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsv | Structured version Visualization version GIF version | ||
| Description: Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| Ref | Expression |
|---|---|
| ballotlemsv | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . . . 5 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . . . 5 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . . . 5 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotth.e | . . . . 5 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 7 | ballotth.mgtn | . . . . 5 ⊢ 𝑁 < 𝑀 | |
| 8 | ballotth.i | . . . . 5 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 9 | ballotth.s | . . . . 5 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsval 34541 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
| 11 | breq1 5122 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑗 ≤ (𝐼‘𝐶))) | |
| 12 | oveq2 7413 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑗)) | |
| 13 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 𝑖 = 𝑗) | |
| 14 | 11, 12, 13 | ifbieq12d 4529 | . . . . 5 ⊢ (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
| 15 | 14 | cbvmptv 5225 | . . . 4 ⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
| 16 | 10, 15 | eqtrdi 2786 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
| 18 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) | |
| 19 | 18 | breq1d 5129 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → (𝑗 ≤ (𝐼‘𝐶) ↔ 𝐽 ≤ (𝐼‘𝐶))) |
| 20 | 18 | oveq2d 7421 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → (((𝐼‘𝐶) + 1) − 𝑗) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 21 | 19, 20, 18 | ifbieq12d 4529 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 22 | 21 | adantlr 715 | . 2 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 23 | simpr 484 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) | |
| 24 | ovexd 7440 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼‘𝐶)) → (((𝐼‘𝐶) + 1) − 𝐽) ∈ V) | |
| 25 | elex 3480 | . . . 4 ⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ V) | |
| 26 | 25 | ad2antlr 727 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼‘𝐶)) → 𝐽 ∈ V) |
| 27 | 24, 26 | ifclda 4536 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ V) |
| 28 | 17, 22, 23, 27 | fvmptd 6993 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ifcif 4500 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 infcinf 9453 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕcn 12240 ℤcz 12588 ...cfz 13524 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: ballotlemsgt1 34543 ballotlemsdom 34544 ballotlemsel1i 34545 ballotlemsf1o 34546 ballotlemsi 34547 ballotlemsima 34548 ballotlemrv 34552 |
| Copyright terms: Public domain | W3C validator |