Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsv Structured version   Visualization version   GIF version

Theorem ballotlemsv 34474
Description: Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsv ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑘,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsv
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . 5 𝑀 ∈ ℕ
2 ballotth.n . . . . 5 𝑁 ∈ ℕ
3 ballotth.o . . . . 5 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . 5 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . 5 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . 5 𝑁 < 𝑀
8 ballotth.i . . . . 5 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . 5 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsval 34473 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)))
11 breq1 5169 . . . . . 6 (𝑖 = 𝑗 → (𝑖 ≤ (𝐼𝐶) ↔ 𝑗 ≤ (𝐼𝐶)))
12 oveq2 7456 . . . . . 6 (𝑖 = 𝑗 → (((𝐼𝐶) + 1) − 𝑖) = (((𝐼𝐶) + 1) − 𝑗))
13 id 22 . . . . . 6 (𝑖 = 𝑗𝑖 = 𝑗)
1411, 12, 13ifbieq12d 4576 . . . . 5 (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
1514cbvmptv 5279 . . . 4 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗))
1610, 15eqtrdi 2796 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
1716adantr 480 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝑆𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗)))
18 simpr 484 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽)
1918breq1d 5176 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 = 𝐽) → (𝑗 ≤ (𝐼𝐶) ↔ 𝐽 ≤ (𝐼𝐶)))
2018oveq2d 7464 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 = 𝐽) → (((𝐼𝐶) + 1) − 𝑗) = (((𝐼𝐶) + 1) − 𝐽))
2119, 20, 18ifbieq12d 4576 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
2221adantlr 714 . 2 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
23 simpr 484 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
24 ovexd 7483 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ V)
25 elex 3509 . . . 4 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ V)
2625ad2antlr 726 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ V)
2724, 26ifclda 4583 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ V)
2817, 22, 23, 27fvmptd 7036 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  ifcif 4548  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  cz 12639  ...cfz 13567  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451
This theorem is referenced by:  ballotlemsgt1  34475  ballotlemsdom  34476  ballotlemsel1i  34477  ballotlemsf1o  34478  ballotlemsi  34479  ballotlemsima  34480  ballotlemrv  34484
  Copyright terms: Public domain W3C validator