![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsv | Structured version Visualization version GIF version |
Description: Value of 𝑆 evaluated at 𝐽 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
Ref | Expression |
---|---|
ballotlemsv | ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . 5 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . 5 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . 5 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . 5 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . 5 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . 5 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . . 5 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsval 30907 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖))) |
11 | breq1 4789 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (𝑖 ≤ (𝐼‘𝐶) ↔ 𝑗 ≤ (𝐼‘𝐶))) | |
12 | oveq2 6800 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (((𝐼‘𝐶) + 1) − 𝑖) = (((𝐼‘𝐶) + 1) − 𝑗)) | |
13 | id 22 | . . . . . 6 ⊢ (𝑖 = 𝑗 → 𝑖 = 𝑗) | |
14 | 11, 12, 13 | ifbieq12d 4252 | . . . . 5 ⊢ (𝑖 = 𝑗 → if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖) = if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
15 | 14 | cbvmptv 4884 | . . . 4 ⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑖), 𝑖)) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗)) |
16 | 10, 15 | syl6eq 2821 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
17 | 16 | adantr 466 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝑆‘𝐶) = (𝑗 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗))) |
18 | simpr 471 | . . . . 5 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) | |
19 | 18 | breq1d 4796 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → (𝑗 ≤ (𝐼‘𝐶) ↔ 𝐽 ≤ (𝐼‘𝐶))) |
20 | 18 | oveq2d 6808 | . . . 4 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → (((𝐼‘𝐶) + 1) − 𝑗) = (((𝐼‘𝐶) + 1) − 𝐽)) |
21 | 19, 20, 18 | ifbieq12d 4252 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
22 | 21 | adantlr 686 | . 2 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝑗 = 𝐽) → if(𝑗 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝑗), 𝑗) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
23 | simpr 471 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) | |
24 | ovexd 6824 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼‘𝐶)) → (((𝐼‘𝐶) + 1) − 𝐽) ∈ V) | |
25 | elex 3363 | . . . 4 ⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ V) | |
26 | 25 | ad2antlr 698 | . . 3 ⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼‘𝐶)) → 𝐽 ∈ V) |
27 | 24, 26 | ifclda 4259 | . 2 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) ∈ V) |
28 | 17, 22, 23, 27 | fvmptd 6430 | 1 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 Vcvv 3351 ∖ cdif 3720 ∩ cin 3722 ifcif 4225 𝒫 cpw 4297 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6031 (class class class)co 6792 infcinf 8502 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 < clt 10275 ≤ cle 10276 − cmin 10467 / cdiv 10885 ℕcn 11221 ℤcz 11578 ...cfz 12532 ♯chash 13320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 |
This theorem is referenced by: ballotlemsgt1 30909 ballotlemsdom 30910 ballotlemsel1i 30911 ballotlemsf1o 30912 ballotlemsi 30913 ballotlemsima 30914 ballotlemrv 30918 |
Copyright terms: Public domain | W3C validator |