![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndex | Structured version Visualization version GIF version |
Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.) |
Ref | Expression |
---|---|
bdaybndex | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = ( bday ‘𝐴)) | |
2 | bdayval 27599 | . . . . 5 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
3 | 2 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → ( bday ‘𝐴) = dom 𝐴) |
4 | 1, 3 | eqtrd 2765 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = dom 𝐴) |
5 | nodmon 27601 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → dom 𝐴 ∈ On) |
7 | 4, 6 | eqeltrd 2825 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 ∈ On) |
8 | onnog 42924 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
9 | 7, 8 | stoic3 1770 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4624 {cpr 4626 × cxp 5670 dom cdm 5672 Oncon0 6364 ‘cfv 6543 1oc1o 8478 2oc2o 8479 No csur 27591 bday cbday 27593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-no 27594 df-bday 27596 |
This theorem is referenced by: bdaybndbday 42927 |
Copyright terms: Public domain | W3C validator |