| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndex | Structured version Visualization version GIF version | ||
| Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| bdaybndex | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = ( bday ‘𝐴)) | |
| 2 | bdayval 27617 | . . . . 5 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → ( bday ‘𝐴) = dom 𝐴) |
| 4 | 1, 3 | eqtrd 2771 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = dom 𝐴) |
| 5 | nodmon 27619 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → dom 𝐴 ∈ On) |
| 7 | 4, 6 | eqeltrd 2835 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 ∈ On) |
| 8 | onnog 43420 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
| 9 | 7, 8 | stoic3 1776 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4606 {cpr 4608 × cxp 5657 dom cdm 5659 Oncon0 6357 ‘cfv 6536 1oc1o 8478 2oc2o 8479 No csur 27608 bday cbday 27610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-no 27611 df-bday 27613 |
| This theorem is referenced by: bdaybndbday 43423 |
| Copyright terms: Public domain | W3C validator |