Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndex Structured version   Visualization version   GIF version

Theorem bdaybndex 43534
Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
bdaybndex ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )

Proof of Theorem bdaybndex
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = ( bday 𝐴))
2 bdayval 27587 . . . . 5 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32adantr 480 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → ( bday 𝐴) = dom 𝐴)
41, 3eqtrd 2766 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = dom 𝐴)
5 nodmon 27589 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
65adantr 480 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → dom 𝐴 ∈ On)
74, 6eqeltrd 2831 . 2 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 ∈ On)
8 onnog 43532 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
97, 8stoic3 1777 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {csn 4573  {cpr 4575   × cxp 5612  dom cdm 5614  Oncon0 6306  cfv 6481  1oc1o 8378  2oc2o 8379   No csur 27578   bday cbday 27580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-no 27581  df-bday 27583
This theorem is referenced by:  bdaybndbday  43535
  Copyright terms: Public domain W3C validator