Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndex Structured version   Visualization version   GIF version

Theorem bdaybndex 43393
Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
bdaybndex ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )

Proof of Theorem bdaybndex
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = ( bday 𝐴))
2 bdayval 27536 . . . . 5 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32adantr 480 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → ( bday 𝐴) = dom 𝐴)
41, 3eqtrd 2764 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = dom 𝐴)
5 nodmon 27538 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
65adantr 480 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → dom 𝐴 ∈ On)
74, 6eqeltrd 2828 . 2 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 ∈ On)
8 onnog 43391 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
97, 8stoic3 1776 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4585  {cpr 4587   × cxp 5629  dom cdm 5631  Oncon0 6320  cfv 6499  1oc1o 8404  2oc2o 8405   No csur 27527   bday cbday 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-no 27530  df-bday 27532
This theorem is referenced by:  bdaybndbday  43394
  Copyright terms: Public domain W3C validator