| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bdaybndex | Structured version Visualization version GIF version | ||
| Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.) |
| Ref | Expression |
|---|---|
| bdaybndex | ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = ( bday ‘𝐴)) | |
| 2 | bdayval 27587 | . . . . 5 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → ( bday ‘𝐴) = dom 𝐴) |
| 4 | 1, 3 | eqtrd 2766 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 = dom 𝐴) |
| 5 | nodmon 27589 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → dom 𝐴 ∈ On) |
| 7 | 4, 6 | eqeltrd 2831 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴)) → 𝐵 ∈ On) |
| 8 | onnog 43532 | . 2 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | |
| 9 | 7, 8 | stoic3 1777 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 {cpr 4575 × cxp 5612 dom cdm 5614 Oncon0 6306 ‘cfv 6481 1oc1o 8378 2oc2o 8379 No csur 27578 bday cbday 27580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-no 27581 df-bday 27583 |
| This theorem is referenced by: bdaybndbday 43535 |
| Copyright terms: Public domain | W3C validator |