Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdaybndex Structured version   Visualization version   GIF version

Theorem bdaybndex 43421
Description: Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.)
Assertion
Ref Expression
bdaybndex ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )

Proof of Theorem bdaybndex
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = ( bday 𝐴))
2 bdayval 27708 . . . . 5 (𝐴 No → ( bday 𝐴) = dom 𝐴)
32adantr 480 . . . 4 ((𝐴 No 𝐵 = ( bday 𝐴)) → ( bday 𝐴) = dom 𝐴)
41, 3eqtrd 2775 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 = dom 𝐴)
5 nodmon 27710 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
65adantr 480 . . 3 ((𝐴 No 𝐵 = ( bday 𝐴)) → dom 𝐴 ∈ On)
74, 6eqeltrd 2839 . 2 ((𝐴 No 𝐵 = ( bday 𝐴)) → 𝐵 ∈ On)
8 onnog 43419 . 2 ((𝐵 ∈ On ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
97, 8stoic3 1773 1 ((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {csn 4631  {cpr 4633   × cxp 5687  dom cdm 5689  Oncon0 6386  cfv 6563  1oc1o 8498  2oc2o 8499   No csur 27699   bday cbday 27701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-no 27702  df-bday 27704
This theorem is referenced by:  bdaybndbday  43422
  Copyright terms: Public domain W3C validator